Open Access
Issue |
ITM Web Conf.
Volume 73, 2025
International Workshop on Advanced Applications of Deep Learning in Image Processing (IWADI 2024)
|
|
---|---|---|
Article Number | 01018 | |
Number of page(s) | 10 | |
Section | Reinforcement Learning and Optimization Techniques | |
DOI | https://doi.org/10.1051/itmconf/20257301018 | |
Published online | 17 February 2025 |
- H. Robbins, Some aspects of the sequential design of experiments. Bull. Amer. Math. Soc. 58, 527-535 (1952). https://www.ams.org/journals/bull/1952-58-05/S0002-9904- 1952-09620-8 [CrossRef] [MathSciNet] [Google Scholar]
- C.A. Gomez-Uribe, N. Hunt, The Netflix recommender system. ACM Trans. Manag. Inf. Syst. 6, 1-19 (2015). https://doi.org/10.1145/2843948 [Google Scholar]
- D.J. Foster, A. Krishnamurthy, H. Luo, Model Selection for Contextual Bandits, in the Proceedings of Machine Learning Research vol 125:1–5, (2020). https://doi.org/10.48550/arXiv.1906.00531 [Google Scholar]
- Q. Kang, W.P. Tay, R. She, Multi-armed linear bandits with latent biases. Inf. Sci. 660, 120103 (2024). https://doi.org/10.1016/j.ins.2024.120103 [CrossRef] [Google Scholar]
- Li, W. Chu, J. Langford, A contextual-bandit approach to personalized news article recommendation, in the Proceedings of the 19th International Conference on World Wide Web, Raleigh, North Carolina, USA, April 26-30 (2010). https://doi.org/10.48550/arXiv.1003.0146 [Google Scholar]
- T. Cunha, A. Marchini, A hybrid meta-learning and multi-armed bandit approach for context-specific multi-objective recommendation optimization, arXiv preprint, (2024). https://doi.org/10.48550/arXiv.2409.08752 [Google Scholar]
- S. Xu, BanditMF: Multi-armed bandit based matrix factorization recommender system, arXiv preprint, (2022). https://doi.org/10.48550/arXiv.2106.10898 [Google Scholar]
- R. Cañamares, M. Redondo, P. Castells, Multi -armed recommender system bandit ensembles, in Proceedings of the the 13th ACM Conference on Recommender Systems, Association for Computing Machinery, New York, NY, United States, September 16-20 (2019). https://doi.org/10.1145/3298689.3346984 [Google Scholar]
- A. Dzhoha, I. Rozora, Multi-armed bandit problem with online clustering as side information. J. Comput. Appl. Math. 427, 115132 (2023). https://doi.org/10.1016/j.cam.2023.115132 [CrossRef] [Google Scholar]
- H.B. Xie, H. Gu, Z. Qi, Efficient algorithms for multi-armed bandits with additional feedbacks: Modeling and algorithms. Inf. Sci. 633, 453-468 (2023). https://doi.org/10.1016/j.ins.2023.03.060 [CrossRef] [Google Scholar]
- Dynamic clustering based contextual combinatorial multi-armed bandit for online recommendation. Knowl.-Based Syst. 257, 109927 (2022). https://doi.org/10.1016/j.knosys.2022.109927 [CrossRef] [Google Scholar]
- A.M. Ikotun, A.E. Ezugwu, L. Abualigah, et al., K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data. Inf. Sci. 622, 178-210 (2023). https://doi.org/10.1016/j.ins.2022.11.139 [CrossRef] [Google Scholar]
- F.M. Harper, J.A. Konstan, The MovieLens Datasets: History and Context. ACM Trans. Int. Int. Sys. 5, 1-19, (2015). https://doi.org/10.1145/2827872 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.