Open Access
Issue
ITM Web Conf.
Volume 73, 2025
International Workshop on Advanced Applications of Deep Learning in Image Processing (IWADI 2024)
Article Number 01019
Number of page(s) 8
Section Reinforcement Learning and Optimization Techniques
DOI https://doi.org/10.1051/itmconf/20257301019
Published online 17 February 2025
  1. R. Kohavi, D. Tang, M. Ye, Controlled experiments on the web: survey and practical guide. Data Min. Knowl. Discov. 18, 3-18 (2009). [Google Scholar]
  2. S.L. Scott, A primer on the use of multi-armed bandits in marketing. Mark. Res. 22, 12-19 (2010). [Google Scholar]
  3. L. Li, S. Wang, H. Zheng, Contextual bandits with continuous actions. Proc. 27th Int. Conf. Mach. Learn. (ICML) (2010). [Google Scholar]
  4. S.J. Pan, Q. Yang, A survey on transfer learning. IEEE Trans. Knowl. Data Eng. (2010). [Google Scholar]
  5. Y. Wang, C. Liu, L. Zhang, Integrating multi-dimensional data in bandit algorithms. J. Mach. Learn. Res. 22, 1-30 (2021). [Google Scholar]
  6. M. Kasy, S. Athey, Regression and inference in econometrics. Rev. Econ. Stud. 86, 1-31 (2019). [CrossRef] [MathSciNet] [Google Scholar]
  7. X. Chen, J. Huang, Y. Li, Accelerating training for multi-armed bandit algorithms. Artif. Intell. Rev. 54, 1-20 (2021). [Google Scholar]
  8. T.L. Lai, H. Robbins, Asymptotically efficient adaptive allocation rules. Adv. Appl. Math. 6, 4-22 (1985). [CrossRef] [MathSciNet] [Google Scholar]
  9. J.C. Gittins, Bandit processes and dynamic allocation indices. J. R. Stat. Soc.: Ser. B (Methodol.) 41, 148-177 (1989). [Google Scholar]
  10. P. Auer, N. Cesa-Bianchi, P. Fischer, Finite-time analysis of the multiarmed bandit problem. Mach. Learn. 47, 235-256 (2002). [CrossRef] [Google Scholar]
  11. G. Schwartz, L. Ward, N. Kallus, Deep Q-learning for multi-armed bandit problems. Proc. 34th Int. Conf. Mach. Learn. (ICML) (2017). [Google Scholar]
  12. M. Kocak, et al., Real-time learning in digital advertising with MAB. Mark. Sci. 38, 304-319 (2019). [Google Scholar]
  13. S. Agrawal, N. Goyal, Further results on bandit problems. Mach. Learn. 47, 235-256 (2013). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.