Open Access
Issue |
ITM Web Conf.
Volume 73, 2025
International Workshop on Advanced Applications of Deep Learning in Image Processing (IWADI 2024)
|
|
---|---|---|
Article Number | 01020 | |
Number of page(s) | 12 | |
Section | Reinforcement Learning and Optimization Techniques | |
DOI | https://doi.org/10.1051/itmconf/20257301020 | |
Published online | 17 February 2025 |
- Y. Deng, X. Zhou, B. Kim, A. Tewari, A. Gupta, N. Shroff, Weighted Gaussian process bandits for non-stationary environments. Proc. Mach. Learn. Res. 151, 6909-6932 (2022). [Google Scholar]
- H. Cai, Z. Cen, L. Leng, R. Song, Periodic-GP: learning periodic world with Gaussian process bandits. CoRR, abs/2105.14422 (2021). [Google Scholar]
- X. Zhou, B. Ji, On kernelized multi-armed bandits with constraints. Adv. Neural Inf. Process. Syst. 35, 14-26 (2022). [Google Scholar]
- S. Gowri, A. Srikanth, G. Gowthaam, G. M, G. D T, L. C R, H. Lavaniya, Dynamic personalized ads recommendation system using contextual bandits. In 2023 Int. Conf. Intell. Syst. Commun. IoT Security (ICISCoIS), 339-344 (2023). [Google Scholar]
- A. Çelik, Diabetes management via Gaussian process bandits. Ph.D. thesis, ProQuest (2021). [Google Scholar]
- Y. Zhou, Z. Lin, R. Guan, J.-B. Sheu, Dynamic battery swapping and rebalancing strategies for e-bike sharing systems. Transp. Res. Part B: Methodol., 177, 102820 (2023). [CrossRef] [Google Scholar]
- N. Silva, H. Werneck, T. Silva, A. C. M. Pereira, L. Rocha, Multi-armed bandits in recommendation systems: a survey of the state-of-the-art and future directions. Expert Syst. Appl. 197, 116669 (2022). [CrossRef] [Google Scholar]
- H. Zenati, A. Bietti, E. Diemert, J. Mairal, M. Martin, P. Gaillard, Efficient kernelized UCB for contextual bandits. Proc. Mach. Learn. Res. 151, 5689-5720 (2022). [Google Scholar]
- V. L. Deringer, A. P. Bartók, N. Bernstein, D. M. Wilkins, M. Ceriotti, G. Csányi, Gaussian process regression for materials and molecules. Chem. Rev. 121, 10073-10141 (2021). [CrossRef] [Google Scholar]
- S. Vakili, N. Bouziani, S. Jalali, A. Bernacchia, D. Shiu, Optimal order simple regret for Gaussian process bandits. Adv. Neural Inf. Process. Syst. 34, 21202-21215 (2021). [Google Scholar]
- Y. Miyake, R. Watanabe, T. Mine, Online nonstationary and nonlinear bandits with recursive weighted Gaussian process. In 2024 IEEE 48th Ann. Comput. Softw. Appl. Conf. (COMPSAC), 11-20 (2024). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.