Open Access
Issue
ITM Web Conf.
Volume 73, 2025
International Workshop on Advanced Applications of Deep Learning in Image Processing (IWADI 2024)
Article Number 01026
Number of page(s) 11
Section Reinforcement Learning and Optimization Techniques
DOI https://doi.org/10.1051/itmconf/20257301026
Published online 17 February 2025
  1. R. Degenne, V. Perchet, Anytime optimal algorithms in stochastic multi-armed bandits. In Int. Conf. Mach. Learn., pp. 1587-1595, PMLR (2016). [Google Scholar]
  2. S. Vaswani, B. Kveton, Z. Wen, M. Ghavamzadeh, L.V.S. Lakshmanan, M. Schmidt, Model-independent online learning for influence maximization. In Int. Conf. Mach. Learn., pp. 3530-3539, PMLR (2017). [Google Scholar]
  3. Y. Zhou, X. Chen, J. Li, Optimal PAC multiple arm identification with applications to crowdsourcing. In Int. Conf. Mach. Learn., pp. 217-225, PMLR (2014). [Google Scholar]
  4. T. Lattimore, C. Szepesvári, Bandit algorithms, Cambridge University Press (2020). [CrossRef] [Google Scholar]
  5. Q. Hu, Performance comparison and analysis of UCB, ETC, and Thompson sampling algorithms in the multi-armed bandit problem. Highlights Sci. Eng. Technol. 94, 273-278 (2024). [Google Scholar]
  6. A. Carpentier, A. Lazaric, M. Ghavamzadeh, R. Munos, P. Auer, Upper-confidence- bound algorithms for active learning in multi-armed bandits. In Int. Conf. Algorithmic Learn. Theory, pp. 189-203, Springer, Berlin, Heidelberg (2011). [Google Scholar]
  7. C. Qu, Enhancing UCB-tuned and asymptotically optimal UCB algorithms through weighted average techniques in multi-armed bandit scenarios. Highlights Sci. Eng. Technol. 94, 187-194 (2024). [CrossRef] [Google Scholar]
  8. D.J. Russo, B. Van Roy, A. Kazerouni, I. Osband, Z. Wen, A tutorial on Thompson sampling. Found. Trends Mach. Learn. 11, 1-96 (2018). [CrossRef] [Google Scholar]
  9. F.B. Hildebrand, Introduction to numerical analysis, Courier Corporation (1987). [Google Scholar]
  10. A. Agresti, Categorical data analysis, John Wiley & Sons (2012). [Google Scholar]
  11. Y. Saito, S. Aihara, M. Matsutani, Y. Narita, Open bandit dataset and pipeline: Towards realistic and reproducible off-policy evaluation. arXiv preprint arXiv:2008.07146 (2020). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.