Open Access
Issue
ITM Web Conf.
Volume 73, 2025
International Workshop on Advanced Applications of Deep Learning in Image Processing (IWADI 2024)
Article Number 02001
Number of page(s) 8
Section Machine Learning, Deep Learning, and Applications
DOI https://doi.org/10.1051/itmconf/20257302001
Published online 17 February 2025
  1. J. Kiefer and K. Dorer, Double Deep Reinforcement Learning, in Proceedings of the 2023 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), Ponta Delgada, Portugal, April 26-27, 17-22 ,(2023) https://doi.org/10.1109/icarsc58346.2023.10129640 [Google Scholar]
  2. R. Xin, J. Zhang, Y. Shao, Complex network classification with convolutional neural network. Tsinghua Sci. Technol. 25, 447–457, (2020) https://doi.org/10.26599/tst.2019.9010055 [CrossRef] [Google Scholar]
  3. Y. Matsuyama, The Alpha-HMM Estimation Algorithm: Prior Cycle Guides Fast Paths. IEEE Trans. Signal Process. 65, 3446–3461, (2017) https://doi.org/10.1109/tsp.2017.2692724 [CrossRef] [MathSciNet] [Google Scholar]
  4. H. Baier, A Rollout-Based Search Algorithm Unifying MCTS and Alpha-Beta, in Computer Games, CGW GIGA 2016, Commun. Comput. Inf. Sci. 705, 57-70, (Springer, Cham, 2017) https://doi.org/10.1007/978-3-319-57969-6_5 [Google Scholar]
  5. I-Chen Wu, T.-R. Wu, A.-J. Liu, H. Guei, and T. Wei, On Strength Adjustment for MCTS-Based Programs. Proc. AAAI Conf. Artif. Intell. 33, 1222–1229, (2019) https://doi.org/10.1609/aaai.v33i01.33011222 [Google Scholar]
  6. D. J. N. J. Soemers, É. Piette, and C. Browne, Biasing MCTS with Features for General Games, in Proceedings of the 2019 IEEE Congress on Evolutionary Computation (CEC), Wellington, New Zealand, June 10-13, 450-457 ,(2019) https://doi.org/10.1109/cec.2019.8790141 [Google Scholar]
  7. J. Li, T. Qiu, C. Wen, K. Xie, F.-Q. Wen, Robust Face Recognition Using the Deep C2D-CNN Model Based on Decision-Level Fusion. Sensors. 18, 2080, (2018) https://doi.org/10.3390/s18072080 [CrossRef] [Google Scholar]
  8. Y. Alotaibi and Veera Ankalu Vuyyuru, “Electroencephalogram-based face emotion recognition using multimodal fusion and 1-D convolution neural network (ID-CNN) classifier,” AIMS Mathematics. 8, 822984–23002, (2023) https://doi.org/10.3934/math.20231169 [CrossRef] [Google Scholar]
  9. S. Asghar et al., Water Classification Using Convolutional Neural Network, IEEE Access. 11, 78601–78612, (2023) https://doi.org/10.1109/access.2023.3298061 [CrossRef] [Google Scholar]
  10. A. Fujita, K. Sakurada, T. Imaizumi, R. Ito, S. Hikosaka, and R. Nakamura, Damage detection from aerial images via convolutional neural networks, in Proceedings of the 2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA), Nagoya, Japan, May 8-12, 5-8 , (2017) https://doi.org/10.23919/mva.2017.7986759 [Google Scholar]
  11. Lien et al., Convolutional Neural Networks to Classify Alzheimer’s Disease Severity Based on SPECT Images: A Comparative Study, J. Clin. Med. 12, 2218, (2023) https://doi.org/10.3390/jcm12062218 [CrossRef] [Google Scholar]
  12. Y. Feng, J. Xu, Y. Lan, J. Guo, W. Zeng, and X. Cheng, From Greedy Selection to Exploratory Decision-Making: Diverse Ranking with Policy-Value Networks, in Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval (SIGIR ‘18), New York, NY, USA, July, 125- 134 (2018) https://doi.org/10.1145/3209978.3209979 [Google Scholar]
  13. J. Scheiermann ,W. Konen, AlphaZero-Inspired Game Learning: Faster Training by Using MCTS Only at Test Time. IEEE Trans. Games. 15, 637-647 (2023) https://doi.org/10.1109/tg.2022.3206733 [CrossRef] [Google Scholar]
  14. Y. Lao, J. Xu, S. Gao, J. Guo, and J.-R. Wen, Name Entity Recognition with Policy- Value Networks. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’19). Association for Computing Machinery, New York, NY, USA, 1245-1248, (2019) https://doi.org/10.1145/3331184.3331349 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.