Open Access
Issue
ITM Web Conf.
Volume 73, 2025
International Workshop on Advanced Applications of Deep Learning in Image Processing (IWADI 2024)
Article Number 02002
Number of page(s) 7
Section Machine Learning, Deep Learning, and Applications
DOI https://doi.org/10.1051/itmconf/20257302002
Published online 17 February 2025
  1. World Health Organization, Ambient (outdoor) air quality and health, (2022). https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and- health [Google Scholar]
  2. IPCC, Climate Change 2021: The Physical Science Basis, Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, (Cambridge University Press, 2021). [Google Scholar]
  3. United Nations Environment Programme, Global Air Quality: An urgent call for action, United Nations Environment Programme. (2022), https://www.unep.org/resources/publication/global-air-quality-urgent-call-action [Google Scholar]
  4. I. Goodfellow, Y. Bengio, A. Courville, Deep learning, MIT Press, (2016). [Google Scholar]
  5. J. Schmidhuber, Deep learning in neural networks: An overview, Neural Networks, 61, 85-117 (2015). [CrossRef] [Google Scholar]
  6. M. Reichstein et al., Deep learning and process understanding for data-driven Earth system science, Nature, 566(7743), 195-204 (2019). [CrossRef] [Google Scholar]
  7. M. Castelli, F. M. Clemente, A. Popovič, S. Silva, L. Vanneschi, A machine learning approach to predict air quality in California, Complexity, 2020(1), 8049504 (2020). [Google Scholar]
  8. K. Kumar, B. P. Pande, Air pollution prediction with machine learning: a case study of Indian cities, International Journal of Environmental Science and Technology, 20(5), 5333-5348 (2023). [CrossRef] [Google Scholar]
  9. C. Gariazzo, G. Carlino, C. Silibello, M. Renzi, S. Finardi, N. Pepe, et al., A multi-city air pollution population exposure study: Combined use of chemical-transport and random-Forest models with dynamic population data, Science of The Total Environment, 724, 138102 (2020). [CrossRef] [Google Scholar]
  10. G. Ravindiran, G. Hayder, K. Kanagarathinam, A. Alagumalai, C. Sonne, Air quality prediction by machine learning models: A predictive study on the Indian coastal city of Visakhapatnam, Chemosphere, 338, 139518 (2023). [CrossRef] [Google Scholar]
  11. Y. C. Liang, Y. Maimury, A. H. L. Chen, J. R. C. Juarez, Machine learning-based prediction of air quality, Applied Sciences, 10(24), 9151 (2020). [CrossRef] [Google Scholar]
  12. D. Seng, Q. Zhang, X. Zhang, G. Chen, X. Chen, Spatiotemporal prediction of air quality based on LSTM neural network, Alexandria Engineering Journal, 60(2) (2021). [CrossRef] [Google Scholar]
  13. R. Espinosa, J. Palma, F. Jiménez, J. Kami ńska, G. Sciavicco, E. Lucena-Sánchez, A time series forecasting-based multi-criteria methodology for air quality prediction, Applied Soft Computing, 113, 107850 (2021). [CrossRef] [Google Scholar]
  14. A. Bekkar, B. Hssina, S. Douzi, K. Douzi, Air pollution prediction in smart city: Deep learning approach, Journal of Big Data, 8, 1-21 (2021). [CrossRef] [Google Scholar]
  15. S. Abirami, P. Chitra, Regional air quality forecasting using spatiotemporal deep learning, Journal of Cleaner Production, 283, 125341 (2021). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.