Open Access
Issue
ITM Web Conf.
Volume 73, 2025
International Workshop on Advanced Applications of Deep Learning in Image Processing (IWADI 2024)
Article Number 02029
Number of page(s) 7
Section Machine Learning, Deep Learning, and Applications
DOI https://doi.org/10.1051/itmconf/20257302029
Published online 17 February 2025
  1. R. Yang, Y. A. Yu, Artificial convolutional neural network in object detection and semantic segmentation for medical imaging analysis. Front. Oncol. 11, 638182 (2021). [CrossRef] [Google Scholar]
  2. B. Van Ginneken, C. M. Schaefer-Prokop, M. Prokop, Computer-aided diagnosis: how to move from the laboratory to the clinic. Radiology 261(3), 719-732 (2011). [CrossRef] [Google Scholar]
  3. R. Hashemzehi, S. J. S. Mahdavi, M. Kheirabadi, S. R. Kamel, Detection of brain tumors from MRI images base on deep learning using hybrid model CNN and NADE. Biocybern. Biomed. Eng. 40(3), 1225-1232 (2020). [CrossRef] [Google Scholar]
  4. G. Chlebus, A. Schenk, J. H. Moltz, B. van Ginneken, H. K. Hahn, H. Meine, Automatic liver tumor segmentation in CT with fully convolutional neural networks and object-based postprocessing. Sci. Rep. 8(1), 15497 (2018). [CrossRef] [Google Scholar]
  5. O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for biomedical image segmentation. In: Med. Image Comput. Comput.-Assist. Interv. MICCAI 2015, Part III, 234-241 (Springer, 2015). [Google Scholar]
  6. H. Dong, G. Yang, F. Liu, Y. Mo, Y. Guo, Automatic brain tumor detection and segmentation using U-Net based fully convolutional networks. In: Med. Image Understand. Anal. MIUA 2017, 506-517 (Springer, 2017). [Google Scholar]
  7. S. S. Bagade, V. K. Shandilya, Use of histogram equalization in image processing for image enhancement. Int. J. Softw. Eng. Res. Pract. 1(2), 6-10 (2011). [Google Scholar]
  8. G. Bortsova, F. Dubost, L. Hogeweg, I. Katramados, M. De Bruijne, Semi-supervised medical image segmentation via learning consistency under transformations. In: Med. Image Comput. Comput.-Assist. Interv. MICCAI 2019, Part VI, 810-818 (Springer, 2019). [Google Scholar]
  9. P. Chlap, H. Min, N. Vandenberg, J. Dowling, L. Holloway, A. Haworth, A review of medical image data augmentation techniques for deep learning applications. J. Med. Imaging Radiat. Oncol. 65(5), 545-563 (2021). [CrossRef] [Google Scholar]
  10. A. Vaswani, Attention is all you need. Adv. Neural Inf. Process. Syst. (2017). [Google Scholar]
  11. A. Dosovitskiy, An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020). [Google Scholar]
  12. D. P. Kingma, Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014). [Google Scholar]
  13. S. A. Taghanaki, Y. Zheng, S. K. Zhou, B. Georgescu, P. Sharma, D. Xu, D. Comaniciu, G. Hamarneh, Combo loss: Handling input and output imbalance in multi- organ segmentation. Comput. Med. Imaging Graph. 75, 24-33 (2019). [CrossRef] [Google Scholar]
  14. S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, Y. Yoo, Cutmix: Regularization strategy to train strong classifiers with localizable features. In: Proc. IEEE/CVF Int. Conf. Comput. Vis., 6023-6032 (2019). [Google Scholar]
  15. A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C. Berg, W. Y. Lo, P. Dollár, Segment anything. In: Proc. IEEE/CVF Int. Conf. Comput. Vis., 4015-4026 (2023). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.