Open Access
Issue |
ITM Web Conf.
Volume 73, 2025
International Workshop on Advanced Applications of Deep Learning in Image Processing (IWADI 2024)
|
|
---|---|---|
Article Number | 02030 | |
Number of page(s) | 7 | |
Section | Machine Learning, Deep Learning, and Applications | |
DOI | https://doi.org/10.1051/itmconf/20257302030 | |
Published online | 17 February 2025 |
- Y. Q. Song, Digital Medical Imaging (Tsinghua University Press, Beijing, 2008) [Google Scholar]
- X. Deng, T. Lan, M. Zhang, et al., Fast adaptive active contour model for segmenting parotid duct based on local gray level differences, J. South China Univ. of Tech., 12 (2018) [Google Scholar]
- S. S. Tamboli, R. Butta, T. S. Jadhav, et al., Optimized active contour segmentation model for medical image compression, Biomed. Signal Process. Control, 80, 104244 (2023) [CrossRef] [Google Scholar]
- S. E. Soheila, E. Zahra, A robust edge detection technique based on Matching Pursuit algorithm for natural and medical images, Biomed. Eng. Adv. 4, 100052.0992 (2022) [CrossRef] [Google Scholar]
- F. Al-Hafiz, S. Al-Megren, H. Kurdi, Red blood cell segmentation by thresholding and Canny detector, Procedia Comput. Sci. 141, 327-334 (2018) [CrossRef] [Google Scholar]
- X. Jiang, Y. Zhu, Y. Liu, et al., MC-DC: an MLP-CNN based dual-path complementary network for medical image segmentation, Comput. Methods Programs Biomed. 242, 107846 (2023) [CrossRef] [Google Scholar]
- Z. Zhang, G. Sun, K. Zheng, et al., TC-Net: A joint learning framework based on CNN and vision transformer for multi-lesion medical image segmentation, Comput. Biol. Med. 161, 106967 (2023) [CrossRef] [Google Scholar]
- S. Alqazzaz, X. F. Sun, X. Yang, et al., Automated brain tumor segmentation on multi- modal MR image using SegNet, Comput. Vis. Media. 5(2), 209-219 (2019) [CrossRef] [Google Scholar]
- T. Zhou, Y. Dong, B. Huo, et al., Review of U-net network applications in medical image segmentation, J. Chin. Soc. Image Graph. 26(9), 2058-2077 (2021) [CrossRef] [Google Scholar]
- Z. Zhang, C. Wu, S. Coleman, et al., DENSE-Inception U-net for medical image segmentation, Comput. Methods Programs Biomed. 192, 105395 (2020) [CrossRef] [Google Scholar]
- Q. Jin, H. Hou, G. Zhang, et al., FEGNet: A feedback enhancement gate network for automatic polyp segmentation, IEEE J. Biomed. Health Inform. 27(7), 3420-3430 (2023) [CrossRef] [Google Scholar]
- A. Vaswani, Attention is all you need, Adv. Neural Inf. Process. Syst. (2017) [Google Scholar]
- H. B. Liu, D. Gu, Fusion of Transformer and convolution for colorectal polyp segmentation algorithm, J. Chin. Med. Phys., 41(3), 316-322 (2024) [Google Scholar]
- B. Fu, Y. Peng, J. He, et al., HmsU-Net: A hybrid multi-scale U-net based on CNN and transformer for medical image segmentation, Comput. Biol. Med., 170, 108013 (2024) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.