Open Access
Issue
ITM Web Conf.
Volume 73, 2025
International Workshop on Advanced Applications of Deep Learning in Image Processing (IWADI 2024)
Article Number 02032
Number of page(s) 10
Section Machine Learning, Deep Learning, and Applications
DOI https://doi.org/10.1051/itmconf/20257302032
Published online 17 February 2025
  1. J. Kim, et al., Combining GANs and Diffusion Models for Image Restoration, Comput. Vis. Image Underst. 165, 15-28 (2022) [Google Scholar]
  2. J. Ho, A. Jain, P. Abbeel, Denoising diffusion probabilistic models, Adv. Neural Inf. Process. Syst. 33, 6840-6851 (2020) [Google Scholar]
  3. J. Smith, X. Zhang, Advances in Deep Learning for Image Restoration, J. Comput. Vis. 35(4), 123-140 (2022) [Google Scholar]
  4. Z. Luo, F.K. Gustafsson, Z. Zhao, et al., Taming diffusion models for image restoration: A review, arXiv preprint arXiv:2409.10353 (2024) [Google Scholar]
  5. B. Xia, Y. Zhang, S. Wang, et al., Diffir: Efficient diffusion model for image restoration, in Proceedings of the IEEE/CVF International Conference on Computer Vision, (2023), 13095-13105 [Google Scholar]
  6. L.T. Trinh, T. Hamagami, Latent Denoising Diffusion GAN: Faster Sampling, Higher Image Quality, IEEE Access. 12, 78161–78172 (2024) [CrossRef] [Google Scholar]
  7. D. Kuznedelev, V. Startsev, D. Shlenskii, et al., Does Diffusion Beat GAN in Image Super Resolution?, arXiv preprint arXiv:2405.17261 (2024) [Google Scholar]
  8. S. Nasr Esfahani, S. Latifi, Image Generation with GANs-based Techniques: A Survey, Int. J. Comput. Sci. Inf. Technol. (2019) [Google Scholar]
  9. Y. Chen, Research on Image Inpainting Method Based on Improved LSGAN, East China Jiaotong University (2022) [Google Scholar]
  10. J. Wei, Research on Image Inpainting Algorithm Based on GAN, North China University of Technology (2023) [Google Scholar]
  11. R. Rombach, A. Blattmann, D. Lorenz, et al., High-resolution image synthesis with latent diffusion models, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2022), 10684-10695 [Google Scholar]
  12. Y. Song, J. Sohl-Dickstein, D.P. Kingma, et al., Score-based generative modeling through stochastic differential equations, arXiv preprint arXiv:2011.13456 (2020) [Google Scholar]
  13. H. Xiao, X. Wang, J. Wang, et al., Single Image Super-Resolution with Denoising Diffusion GANs, Sci. Rep. 14, 4272 (2024) [CrossRef] [MathSciNet] [Google Scholar]
  14. Z. Xiao, K. Kreis, A. Vahdat, Tackling the generative learning trilemma with denoising diffusion GANs, arXiv preprint arXiv:2112.07804 (2021) [Google Scholar]
  15. W. Li, K. Zhou, L. Qi, L. Lu, J. Lu, Best-Buddy GANs for Highly Detailed Image Super-resolution, Proc. AAAI Conf. Artif. Intell. 36(2), 1412-1420 (2022) [Google Scholar]
  16. Y. Yuan, C. Yuan, Efficient Conditional Diffusion Model with Probability Flow Sampling for Image Super-resolution, Proc. AAAI Conf. Artif. Intell. 38(7), 6862-6870 (2024) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.