Open Access
Issue
ITM Web Conf.
Volume 73, 2025
International Workshop on Advanced Applications of Deep Learning in Image Processing (IWADI 2024)
Article Number 02034
Number of page(s) 7
Section Machine Learning, Deep Learning, and Applications
DOI https://doi.org/10.1051/itmconf/20257302034
Published online 17 February 2025
  1. Y. Wu, X. Q. Zhang. Artificial intelligence in medical image processing: progress and prospect. Journal of Third Military Medical University, 43(18): 1707-1712. DOI: 10.16016/j.1000-5404.202106194 (2021) [Google Scholar]
  2. Y. Cao, H. Xu, S. Liu, Z. Wang, & H. Li. Review of deep learning-based medical image segmentation. Journal of Computer Applications, 41(8), 2273-2287. (2021) DOI: 10.11772/j.issn.1001-9081.2020101638 [Google Scholar]
  3. D. L. Pham, C. Xu, & J. L. Prince. Current methods in medical image segmentation. Annual Review of Biomedical Engineering, 2, 315-337 (2000) [CrossRef] [Google Scholar]
  4. G. Song, & J. Chen. A Review of Deep Learning Methods for Pathology Image Analysis. Journal of Third Military Medical University, 43(18), (2022) 1707-1712. DOI: 10.16016/j.1000-5404.202106194 [Google Scholar]
  5. Z. Zhang, P. Chen, M. McGough, et al. Pathologist-level interpretable whole-slide cancer diagnosis with deep learning. Nature Machine Intelligence, 1(5), 236-245. (2019) DOI: 10.1038/s42256-019-0036-2. [CrossRef] [Google Scholar]
  6. N. Otsu. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62-66 (1979) [CrossRef] [Google Scholar]
  7. R. Adams, & L. Bischof. Seeded region growing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(6), 641-647 (1994) [CrossRef] [Google Scholar]
  8. J. Canny. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(6), 679-698 (1986) [CrossRef] [Google Scholar]
  9. Y. LeCun, Y. Bengio, & G. Hinton. Deep learning. Nature, 521(7553), 436-444 (2015) [CrossRef] [PubMed] [Google Scholar]
  10. O. Ronneberger, P. Fischer, & T. Brox. U-Net: Convolutional networks for biomedical image segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 234-241). Springer, Cham (2015) [Google Scholar]
  11. F. Milletari, N. Navab, & S. A. Ahmadi. V-Net: Fully convolutional neural networks for volumetric medical image segmentation. In 3D Vision (3DV), 2016 Fourth International Conference on (pp. 565-571). IEEE (2016) [Google Scholar]
  12. O. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, & O. Ronneberger. 3D U-Net: Learning dense volumetric segmentation from sparse annotation. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 424-432). Springer, Cham. DOI: 10.1007/978-3-319-46973-2_49 (2016) [Google Scholar]
  13. B. H. Menze, A. Jakab, S. Bauer, et al. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Transactions on Medical Imaging, 34(10), 1993-2024. DOI: 10.1109/TMI.2015.2450710 (2015) [CrossRef] [Google Scholar]
  14. S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, & C. Davatzikos. Advancing The Frontiers Of Brain Tumor Segmentation: An Open Challenge. Frontiers in Neuroscience, 11. (2017) DOI: 10.3389/fnins.2017.00060 [Google Scholar]
  15. G. Litjens, T. Kooi, B. E. Bejnordi, et al. A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60-88. DOI: 10.1016/j.media.2017.07.005 (2017) [CrossRef] [Google Scholar]
  16. D. Shen, G. Wu, & H. I. Suk. Deep learning in medical image analysis. Annual Review of Biomedical Engineering, 19, 221-248. DOI: 10.1146/annurev-bioeng-071516- 044442 (2017) [CrossRef] [Google Scholar]
  17. X. Ye, K. Chen, X. Qi, et al. Deep convolutional neural networks for coronary artery segmentation in CT images. Journal of Healthcare Engineering, (2019) DOI: 10.1155/2019/7163916 [Google Scholar]
  18. W. Bai, X. Lu, Y. Chen, et al. A survey of deep learning in cardiac magnetic resonance imaging. Quantitative Imaging in Medicine and Surgery, 10(3), 693-708. (2020) DOI: 10.21037/qims-20-158 [Google Scholar]
  19. G. Sharma, & M. K. Markey. Interpretable machine learning for medical imaging. arXiv preprint arXiv:1805.03240. DOI: 10.1148/ryai.2018175015 (2018) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.