Open Access
Issue
ITM Web Conf.
Volume 73, 2025
International Workshop on Advanced Applications of Deep Learning in Image Processing (IWADI 2024)
Article Number 02035
Number of page(s) 7
Section Machine Learning, Deep Learning, and Applications
DOI https://doi.org/10.1051/itmconf/20257302035
Published online 17 February 2025
  1. F. M. Shiri, T. Perumal, N. Mustapha, R. Mohamed, A comprehensive overview and comparative analysis on deep learning models: CNN, RNN, LSTM, GRU, arXiv (2024). [Google Scholar]
  2. Rosenberg, M. Hebert, H. Schneiderman, Semi-supervised self-training of object detection models, In Proceedings of the Seventh IEEE Workshops on Application of Computer Vision (2005). [Google Scholar]
  3. Y. Qiu, X. Gong, Z. Ma, X. Chen, MixLab: An Informative Semi-supervised Method for Multi-label Classification, In X. Zhu, M. Zhang, Y. Hong, R. He (Eds.), Natural Language Processing and Chinese Computing, 506–518, Springer International Publishing (2020). [Google Scholar]
  4. Y. Wang, Z. Liu, S. Lian, Semi-supervised object detection: A survey on recent research and progress (2023). [Google Scholar]
  5. Tarvainen, H. Valpola, Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results, Advances in Neural Information Processing Systems 30 (2017). [Google Scholar]
  6. D. Berthelot, N. Carlini, I. J. Goodfellow, N. Papernot, A. Oliver, C. Raffel, MixMatch: A holistic approach to semi-supervised learning, CoRR, abs/1905.02249 (2019). [Google Scholar]
  7. K. Sohn, D. Berthelot, N. Carlini, Z. Zhang, H. Zhang, C. A. Raffel, E. D. Cubuk, A. Kurakin, C.-L. Li, FixMatch: Simplifying semi-supervised learning with consistency and confidence, Advances in Neural Information Processing Systems 33, 596–608 (2020). [Google Scholar]
  8. D. Lee, Pseudo-Label: The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks (2013). [Google Scholar]
  9. P. Bachman, O. Alsharif, D. Precup, Learning with pseudo-ensembles, In Advances in Neural Information Processing Systems, 3365–3373 (2014). [Google Scholar]
  10. S. Laine, T. Aila, Temporal ensembling for semi-supervised learning, CoRR (2016). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.