Open Access
Issue
ITM Web Conf.
Volume 73, 2025
International Workshop on Advanced Applications of Deep Learning in Image Processing (IWADI 2024)
Article Number 02036
Number of page(s) 9
Section Machine Learning, Deep Learning, and Applications
DOI https://doi.org/10.1051/itmconf/20257302036
Published online 17 February 2025
  1. P. Ekman, W. V. Friesen, Constants across cultures in the face and emotion, Journal of Personality and Social Psychology 17(2), 124–129 (1971). [CrossRef] [Google Scholar]
  2. P. Ekman, W. V. Friesen, Nonverbal leakage and clues to deception, Psychiatry 32(1), 88–106 (1969). [CrossRef] [Google Scholar]
  3. Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, L. D. Jackel, Backpropagation applied to handwritten zip code recognition, Neural Computation 1(4), 541–551 (1989). [CrossRef] [Google Scholar]
  4. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1–9 (2015). [Google Scholar]
  5. K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–778 (2016). [Google Scholar]
  6. D. E. Rumelhart, G. E. Hinton, R. J. Williams, Learning representations by backpropagating errors, Nature 323(6088), 533–536 (1986). [CrossRef] [Google Scholar]
  7. W. S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity, The Bulletin of Mathematical Biophysics 5(4), 115–133 (1943). [CrossRef] [Google Scholar]
  8. K. Fukushima, Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position, Biological Cybernetics 36(4), 193–202 (1980). [CrossRef] [PubMed] [Google Scholar]
  9. A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with deep convolutional neural networks, Advances in Neural Information Processing Systems 25, 1097–1105 (2012). [Google Scholar]
  10. M. Qiu, Research on facial expression recognition algorithms based on convolutional neural networks (Master’s thesis), Nanchang University (2024). [Google Scholar]
  11. H. Ren, Research on facial expression recognition methods based on improved convolutional neural networks (Master’s thesis), Guizhou Normal University (2024). [Google Scholar]
  12. S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, In Proceedings of the 32nd International Conference on Machine Learning, 448–456 (2015). [Google Scholar]
  13. Z. Cao, Research and application of micro-expression recognition algorithms based on deep learning (Master’s thesis), Qilu University of Technology (2024). [Google Scholar]
  14. C. Cao, D. Zhang, Micro-expression recognition combining multi-region features and feature fusion, Small and Micro Computer Systems, 1–9 (2024). [Google Scholar]
  15. S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Computation 9(8), 1735–1780 (1997). [CrossRef] [Google Scholar]
  16. T. Y. Hou, X. H. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media, Journal of Computational Physics 134(1), 169–189 (1997). [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.