Open Access
Issue |
ITM Web Conf.
Volume 73, 2025
International Workshop on Advanced Applications of Deep Learning in Image Processing (IWADI 2024)
|
|
---|---|---|
Article Number | 02037 | |
Number of page(s) | 8 | |
Section | Machine Learning, Deep Learning, and Applications | |
DOI | https://doi.org/10.1051/itmconf/20257302037 | |
Published online | 17 February 2025 |
- I. Goodfellow, et al., Generative Adversarial Nets, NeurIPS (2014). [Google Scholar]
- A. Radford, L. Metz, S. Chintala, Unsupervised Representation Learning with Deep Convolutional GANs, ICLR (2015). [Google Scholar]
- D. P. Kingma, M. Welling, Auto-Encoding Variational Bayes, arXiv preprint arXiv:1312.6114 (2013). [Google Scholar]
- A. Razavi, et al., Generating Diverse High-Fidelity Images with VQ-VAE-2, Advances in Neural Information Processing Systems (NeurIPS) (2019). [Google Scholar]
- C. Saharia, et al., Imagen: Photorealistic Text-to-Image DM, Google AI Research (2022). [Google Scholar]
- A. Ramesh, et al., DALL·E 2: A Diffusion Model for Text -to-image generation, OpenAI (2022). [Google Scholar]
- P. Dhariwal, A. Nichol, DM Beat GANs on Image Synthesis, arXiv preprint arXiv:2105.05233 (2021). [Google Scholar]
- I. Goodfellow, et al., Generative Adversarial Nets, NeurIPS (2014). [Google Scholar]
- C. Doersch, Tutorial on Variational Autoencoders, arXiv:1606.05908 (2016). [Google Scholar]
- D. P. Kingma, M. Welling, Auto-Encoding Variational Bayes, arXiv:1312.6114 (2014). [Google Scholar]
- S. Ge, T. Park, J. Y. Zhu, J. B. Huang, Expressive Text-to-image generation with Rich Text, Proceedings of the IEEE/CVF International Conference on Computer Vision, 7545-7556 (2023). [Google Scholar]
- J. Ho, A. Jain, P. Abbeel, Denoising diffusion probabilistic models, Advances in Neural Information Processing Systems 33, 6840-6851 (2020). [Google Scholar]
- L. Yang, Z. Zhang, Y. Song, et al., DM: A comprehensive survey of methods and applications, ACM Computing Surveys 56(4), 1-39 (2023). [Google Scholar]
- R. Rombach, A. Blattmann, D. Lorenz, et al., High-resolution image synthesis with latent DM, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 10684-10695 (2022). [Google Scholar]
- N. Ruiz, Y. Li, V. Jampani, et al., Dreambooth: Fine tuning text-to-image DM for subject-driven generation, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 22500-22510 (2023). [Google Scholar]
- C. Saharia, W. Chan, S. Saxena, et al., Photorealistic text-to-image DM with deep language understanding, Advances in Neural Information Processing Systems 35, 36479-36494 (2022). [Google Scholar]
- J. Ho, T. Salimans, Classifier-free diffusion guidance, arXiv preprint arXiv:2207.12598 (2022). [Google Scholar]
- A. Lou, S. Ermon, Reflected DM, International Conference on Machine Learning, PMLR, 22675-22701 (2023). [Google Scholar]
- X. Wang, Z. He, X. Peng, Artificial-Intelligence-Generated Content with DM: A Literature Review, Mathematics 12(7), 977 (2024). [CrossRef] [MathSciNet] [Google Scholar]
- C. Saharia, W. Chan, S. Saxena, et al., Photorealistic text-to-image DM with deep language understanding, Advances in Neural Information Processing Systems 35, 36479-36494 (2022). [Google Scholar]
- T. H. Nguyen, A. Tran, Swiftbrush: One-step text-to-image diffusion model with variational score distillation, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 7807-7816 (2024). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.