Open Access
Issue
ITM Web Conf.
Volume 73, 2025
International Workshop on Advanced Applications of Deep Learning in Image Processing (IWADI 2024)
Article Number 03001
Number of page(s) 11
Section Blockchain, AI, and Technology Integration
DOI https://doi.org/10.1051/itmconf/20257303001
Published online 17 February 2025
  1. A. L. Hodgkin, A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117(4), 500-544 (1952). [CrossRef] [Google Scholar]
  2. A. L. Hodgkin, A. F. Huxley, The components of membrane conductance in the giant axon of Loligo. Journal of Physiology, 116(4), 473-496 (1952). [CrossRef] [Google Scholar]
  3. A. L. Hodgkin, A. F. Huxley, The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. Journal of Physiology, 116(4), 497-506 (1952). [CrossRef] [Google Scholar]
  4. N. Schweighofer, K. Doya, S. Kuroda, Cerebellar aminergic neuromodulation: towards a functional understanding. Brain Research. Brain Research Reviews, 44(2–3), 103-116 (March 2004). [CrossRef] [Google Scholar]
  5. C. Ghez, S. Fahn, The cerebellum. In E. R. Kandel, J. H. Schwartz (Eds.), Principles of Neural Science, 2nd edition. New York: Elsevier, 502-522 (1985). [Google Scholar]
  6. B. Rapp, The Handbook of Cognitive Neuropsychology: What Deficits Reveal about the Human Mind. Psychology Press, 481 (2001). [Google Scholar]
  7. W. Maass, Networks of Spiking Neurons: The Third Generation of Neural Network Models. Neural Networks, 10(9), 1659-1671 (1997). [CrossRef] [Google Scholar]
  8. Y. Wu, L. Deng, G. Li, J. Zhu, L. Shi, Spatio-Temporal Backpropagation for Training High-Performance Spiking Neural Networks. Front. Neurosci., 12:331 (2018). [Google Scholar]
  9. H. Zheng, Y. Wu, L. Deng, Y. Hu, G. Li, Going Deeper With Directly-Trained Larger Spiking Neural Networks. Proceedings of the AAAI Conference on Artificial Intelligence, 35(12), 11062-11070 (2021). [CrossRef] [Google Scholar]
  10. Y. Ding, L. Zuo, M. Jing, P. He, Y. Xiao, Shrinking Your TimeStep: Towards Low- Latency Neuromorphic Object Recognition with Spiking Neural Networks. Proceedings of the AAAI Conference on Artificial Intelligence, 38(10), 11811-11819 (2024). [CrossRef] [Google Scholar]
  11. A. R. Nurutdinov, R. K. Latypov, A Novel Artificial Neural Networks Architecture Based on Cerebellum Model. Lobachevskii Journal of Mathematics, 44, 733-746 (2023). [CrossRef] [MathSciNet] [Google Scholar]
  12. M. N. Modi, Y. Shuai, G. C. Turner, The Drosophila mushroom body: from architecture to algorithm in a learning circuit. Annual Review of Neuroscience, 43(1), 465-484 (2020). [CrossRef] [Google Scholar]
  13. J. S. Albus (1975). A new approach to manipulator control: The cerebellar model articulation controller (CMAC). [Google Scholar]
  14. W. Dabney, Z. Kurth-Nelson, N. Uchida, et al., A distributional code for value in dopamine-based reinforcement learning. Nature, 577, 671-675 (2020). [CrossRef] [Google Scholar]
  15. L. Dong, B. Xu, CIF: Continuous Integrate-and-Fire for End-to-End Speech Recognition. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 6079-6083 (2020). [Google Scholar]
  16. J. Chen, & H. Qiao. Muscle-synergies-based neuromuscular control for motion learning and generalization of a musculoskeletal system. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(6), 3993-4006 (2020). [Google Scholar]
  17. J. Zhang, J. Chen, W. Wu, H. Qiao, A Cerebellum-Inspired Prediction and Correction Model for Motion Control of a Musculoskeletal Robot. IEEE Transactions on Cognitive and Developmental Systems, 15(3), 1209-1223 (2023). [CrossRef] [Google Scholar]
  18. G. Tang, N. Kumar, R. Yoo, K. Michmizos, Deep Reinforcement Learning with Population-Coded Spiking Neural Network for Continuous Control. In Conference on Robot Learning, 2016-2029. PMLR (2021). [Google Scholar]
  19. S. R. R. Rohani, S. Hedayatian, M. S. Baghshah, BIMRL: Brain Inspired Meta Reinforcement Learning. In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 9048-9053 (2022). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.