Open Access
Issue
ITM Web Conf.
Volume 73, 2025
International Workshop on Advanced Applications of Deep Learning in Image Processing (IWADI 2024)
Article Number 03002
Number of page(s) 14
Section Blockchain, AI, and Technology Integration
DOI https://doi.org/10.1051/itmconf/20257303002
Published online 17 February 2025
  1. L. A. Passos, D. Jodas, K. A. Costa, L. A. Souza Júnior, D. Rodrigues, J. Del Ser, & J. P. Papa. A review of deep learning-based approaches for deepfake content detection. Expert Systems, 41(8), e13570 (2024). [CrossRef] [Google Scholar]
  2. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770-778, (2016). [Google Scholar]
  3. K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556, (2014). [Google Scholar]
  4. G. Huang, Z. Liu, L. Van Der Maaten, K. Q. Weinberger, Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700-4708, (2017). [Google Scholar]
  5. H. Chen, Y. Li, D. Lin, B. Li, & J. Wu, Watching the big artifacts: Exposing deepfake videos via bi-granularity artifacts. Pattern Recognition, 135, 109179 (2023). [CrossRef] [Google Scholar]
  6. S. Dong, J. Wang, R. Ji, J. Liang, H. Fan, & Z. Ge, Implicit identity leakage: The stumbling block to improving deepfake detection generalization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 3994-4004) (2023). [Google Scholar]
  7. J. Gao, S. Concas, G. Orrù, X. Feng, G. L. Marcialis, & F. Roli, Generalized deepfake detection algorithm based on inconsistency between inner and outer faces. In International Conference on Image Analysis and Processing (pp. 343-355). Cham: Springer Nature Switzerland (2023). [Google Scholar]
  8. B. Liu, B. Liu, M. Ding, T. Zhu, & X. Yu, TI2Net: temporal identity inconsistency network for deepfake detection. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (pp. 4691-4700) (2023). [Google Scholar]
  9. Y. Yu, X. Zhao, R. Ni, S. Yang, Y. Zhao, & A. C. Kot, Augmented multi-scale spatiotemporal inconsistency magnifier for generalized deepfake detection. IEEE Transactions on Multimedia, 25, 8487-8498 (2023). [CrossRef] [Google Scholar]
  10. L. Zhang, T. Lu, & Y. Du. A survey of deepfake detection methods for facial videos. Journal of Computer Science and Exploration (in Chinese), 17(1), 1. (2023). [Google Scholar]
  11. J. Thies, M. Zollhofer, M. Stamminger, C. Theobalt, & M. Nießner, Face2face: Real - time face capture and reenactment of rgb videos. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2387-2395) (2016). [Google Scholar]
  12. J. Thies, M. Zollhöfer, & M. Nießner, Deferred neural rendering: Image synthesis using neural textures. Acm Transactions on Graphics (TOG), 38(4), 1-12. (2019). [CrossRef] [Google Scholar]
  13. A. Rossler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, & M. Nießner. Faceforensics++: Learning to detect manipulated facial images. In Proceedings of the IEEE/CVF international conference on computer vision, pp. 1-11, (2019). [Google Scholar]
  14. Y. Li, X. Yang, P. Sun, H. Qi, & S. Lyu, Celeb-df: A large-scale challenging dataset for deepfake forensics. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 3207-3216) (2020). [Google Scholar]
  15. B. Dolhansky, J. Bitton, B. Pflaum, J. Lu, R. Howes, M. Wang, & C. C. Ferrer, The deepfake detection challenge (dfdc) dataset. arXiv preprint arXiv:2006.07397 (2020). [Google Scholar]
  16. L. Jiang, R. Li, W. Wu, C. Qian, & C. C. Loy, Deeperforensics-1.0: A large-scale dataset for real-world face forgery detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 2889-2898) (2020). [Google Scholar]
  17. T. Zhou, W. Wang, Z. Liang, & J. Shen, Face forensics in the wild. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 5778-5788) (2021). [Google Scholar]
  18. P. Kwon, J. You, G. Nam, S. Park, & G. Chae, Kodf: A large-scale korean deepfake detection dataset. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 10744-10753) (2021). [Google Scholar]
  19. X. Dong, J. Bao, D. Chen, W. Zhang, N. Yu, D. Chen, ... & B. Guo. Identity-driven deepfake detection. arXiv preprint arXiv:2012.03930 (2020). [Google Scholar]
  20. B. Zi, M. Chang, J. Chen, X. Ma, & Y. G. Jiang, Wilddeepfake: A challenging real- world dataset for deepfake detection. In Proceedings of the 28th ACM international conference on multimedia (pp. 2382-2390) (2020). [Google Scholar]
  21. X. Li, Y. Lang, Y. Chen, X. Mao, Y. He, S. Wang, ... & Q. Lu, Sharp multiple instance learning for deepfake video detection. In Proceedings of the 28th ACM international conference on multimedia (pp. 1864-1872) (2020). [Google Scholar]
  22. L. Li, J. Bao, T. Zhang, H. Yang, D. Chen, F. Wen, & B. Guo, Face x-ray for more general face forgery detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 5001-5010) (2020). [Google Scholar]
  23. K. Shiohara, & T. Yamasaki. Detecting deepfakes with self-blended images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 18720-18729) (2022). [Google Scholar]
  24. A. Rossler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, & M. Nießner. Faceforensics++: Learning to detect manipulated facial images. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 1-11) (2019). [Google Scholar]
  25. Q. Liu, Z. Xue, H. Liu, & J. Liu. Enhancing deepfake detection with diversified self- blending images and residuals. IEEE Access (2024). [Google Scholar]
  26. Z. Xue. A general generative adversarial capsule network for hyperspectral image spectral-spatial classification. Remote Sensing Letters, 11(1), 19-28 (2020). [CrossRef] [Google Scholar]
  27. H. H. Nguyen, J. Yamagishi, & I. Echizen. Use of a capsule network to detect fake images and videos. arXiv preprint arXiv:1910.12467 (2019). [Google Scholar]
  28. X. Guo, X. Liu, Z. Ren, S. Grosz, I. Masi, & X. Liu. Hierarchical fine-grained image forgery detection and localization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 3155-3165) (2023). [Google Scholar]
  29. Y. Qian, G. Yin, L. Sheng, Z. Chen, & J. Shao. Thinking in frequency: Face forgery detection by mining frequency-aware clues. In European Conference on Computer Vision (pp. 86-103). Cham: Springer International Publishing (2020). [Google Scholar]
  30. J. Gao, Z. Xia, G. L. Marcialis, C. Dang, J. Dai, & X. Feng. DeepFake detection based on high-frequency enhancement network for highly compressed content. Expert Systems with Applications, 249, 123732 (2024). [CrossRef] [Google Scholar]
  31. H. Zhao, W. Zhou, D. Chen, T. Wei, W. Zhang, & N. Yu. Multi-attentional deepfake detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 2185-2194) (2021). [Google Scholar]
  32. J. Fei, Y. Dai, P. Yu, T. Shen, Z. Xia, & J. Weng. Learning second order local anomaly for general face forgery detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 20270-20280) (2022). [Google Scholar]
  33. L. Guarnera, O. Giudice, & S. Battiato. Deepfake detection by analyzing convolutional traces. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (pp. 666-667) (2020). [Google Scholar]
  34. X. Wang, J. Huang, S. Ma, S. Nepal, & C. Xu. Deepfake disrupter: The detector of deepfake is my friend. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 14920-14929) (2022). [Google Scholar]
  35. Y. Jeong, D. Kim, Y. Ro, P. Kim, & J. Choi. Fingerprintnet: Synthesized fingerprints for generated image detection. In European Conference on Computer Vision (pp. 76-94). Cham: Springer Nature Switzerland (2022, October). [Google Scholar]
  36. J. Cao, C. Ma, T. Yao, S. Chen, S. Ding, & X. Yang. End-to-end reconstruction- classification learning for face forgery detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 4113-4122) (2022). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.