Open Access
Issue
ITM Web Conf.
Volume 73, 2025
International Workshop on Advanced Applications of Deep Learning in Image Processing (IWADI 2024)
Article Number 03018
Number of page(s) 8
Section Blockchain, AI, and Technology Integration
DOI https://doi.org/10.1051/itmconf/20257303018
Published online 17 February 2025
  1. J. Konečny, H. B. McMahan, D. Ramage, P. Richtárik, Federated optimization: Distributed optimization beyond the data center, Proc. 20th Int. Conf. Artif. Intell. Stat. (AISTATS) 54, 1-10 (2016) [Google Scholar]
  2. Y. Zhang, W. Li, J. Zhang, A survey of data shuffling methods in distributed machine learning, J. Comput. Sci. Technol. 35(4), 685-703 (2020) [Google Scholar]
  3. X. Zhu, Y. Zhang, Z. Zhao, J. Zuo, Radio frequency sensing based environmental monitoring technology, Proc. Fourth Int. Workshop Pattern Recognit., Vol. 11198, pp. 187-191, SPIE (2019) [Google Scholar]
  4. Y. Shen, Z. Zhang, Data shuffling in distributed learning: A survey, IEEE Trans. Neural Netw. Learn. Syst. 30(3), 765-777 (2019) [CrossRef] [MathSciNet] [Google Scholar]
  5. D. Berthelot, N. Carlini, N. Papernot, I. Goodfellow, MixMatch: A holistic approach to semi-supervised learning, Adv. Neural Inf. Process. Syst. 32 (2019) [Google Scholar]
  6. Y. Zhang, H. Xu, X. Zhu, et al., Detection and Quantization Technique of Optical Distributed Acoustic Coupling Based on φ-OTDR, J. Shanghai Jiaotong Univ. (Sci.) 25, 208–213 (2020) [CrossRef] [Google Scholar]
  7. Y. Liu, Z. Zhang, J. Wang, Addressing class imbalance in machine learning: A review, J. Mach. Learn. Res. 22(1), 1-30 (2021) [Google Scholar]
  8. Y. Zhang, W. Li, J. Zhang, Advanced data shuffling techniques for improving model performance, Artif. Intell. Rev. 55(4), 2261-2280 (2022) [Google Scholar]
  9. R. Wang, J. Zhu, S. Wang, T. Wang, J. Huang, X. Zhu, Multi-modal emotion recognition using tensor decomposition fusion and self-supervised multi-tasking, Int. J. Multimed. Inf. Retr. 13(4), 39 (2024) [CrossRef] [Google Scholar]
  10. H. Wang, Y. Chen, X. Liu, Efficient communication in distributed learning: A survey on coded shuffling, IEEE Trans. Neural Netw. Learn. Syst. 34(2), 123-135 (2023) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.