Open Access
Issue |
ITM Web Conf.
Volume 75, 2025
The Second International Conference on Mathematical Analysis and Its Applications (ICONMAA 2024)
|
|
---|---|---|
Article Number | 02008 | |
Number of page(s) | 6 | |
Section | Differential Equations | |
DOI | https://doi.org/10.1051/itmconf/20257502008 | |
Published online | 21 February 2025 |
- S. Jafari, J.C. Sprott, and M.R.H. Golpayegani, Elementary Quadratic Chaotic Flows with no Equilibria. Physics Letters A 377, 699–702 (2013). https://doi.org/10.1016/j.physleta.2013.01.009 [CrossRef] [MathSciNet] [Google Scholar]
- J.C. Sprott, Some Simple Chaotic Flows. Phys. Rev. E 50, R647–R650 (1994). https://doi.org/10.1103/PhysRevE.50.R647. [CrossRef] [Google Scholar]
- W.G. Hoover, Canonical Dynamics: Equilibrium Phasespace Distributions. Phys. Rev. A 31, 1695–1697 (1985). https://doi.org/10.1103/PhysRevA.31.1695. [CrossRef] [PubMed] [Google Scholar]
- W.G. Hoover, Remark on ‘Some Simple Chaotic Flows’. Phys. Rev. E 51, 759–760 (1995). https://doi.org/10.1103/PhysRevE.51.759. [CrossRef] [Google Scholar]
- S. Nosé, A Unified Formulation of the Constant Temperature Molecular-Dynamics Methods. J. Chem. Phys. 81, 511–519 (1984). https://doi.org/10.1063/1.447334. [CrossRef] [Google Scholar]
- H.A. Posch, W.G. Hoover, F.J. Vesely, Canonical Dynamics of the Nosé oscillator: Stability, Order, and Chaos. Phys. Rev. A 33, 4253–4265 (1986). https://doi.org/10.1103/PhysRevA.33.4253. [CrossRef] [MathSciNet] [Google Scholar]
- J.A. Yorke, K.T. Alligood, Period-Doubling Cascades of Attractor: A Prerequisite for Horseshoes. Communications in mathematical physics 101 3, 305–321 (1985). https://doi.org/10.1007/BF01216092. [CrossRef] [Google Scholar]
- L.P. Shilnikov, On the Generation of a Periodic Motion from a Trajectory Which Leaves and Re-Enters a Saddle-Saddle State of Equilibrium. Soviet Math. Dokl. 7, 1155–1158 (1966). [Google Scholar]
- M. Messias and A.C. Reinol, On the Formation of Hidden Chaotic Attractors and Nested Invariant Tori in the Sprott A System. Nonlinear Dyn. 88, 807–821 (2017). https://DOI10.1007/s11071-016-3277-0. [CrossRef] [Google Scholar]
- M. Messias and A.C. Reinol, On the existence of periodic orbits and KAM tori in the Sprott A system: a special case of the Nosé–Hoover oscillator. Nonlinear Dyn. 92, 1287–1297 (2018). https://doi.org/10.1007/s11071-018-4125-1. [CrossRef] [Google Scholar]
- F. Verhulst dan T. Bakri, Time-reversal, Tori Families, and Canards in the Sprott A and NE9 Systems. Chaos 32, 083119-1-12 (2022). https://doi.org/10.1063/5.0097508. [Google Scholar]
- J.A. Sanders, F. Verhulst, J. Murdock, Averaging Methods in Nonlinear Dynamical Systems. Springer, New York (2007). [Google Scholar]
- F. Verhulst, Nonlinear Differential Equations and Dynamical Systems. Springer-Verlag, Berlin (1996). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.