Open Access
Issue |
ITM Web Conf.
Volume 75, 2025
The Second International Conference on Mathematical Analysis and Its Applications (ICONMAA 2024)
|
|
---|---|---|
Article Number | 03001 | |
Number of page(s) | 8 | |
Section | Operator Theory | |
DOI | https://doi.org/10.1051/itmconf/20257503001 | |
Published online | 21 February 2025 |
- C.B. Morrey, On the solutions of quasi-linear elliptic parial differential equations. Trans. Amer. Math. Soc. 43, 126–166 (1938). [CrossRef] [MathSciNet] [Google Scholar]
- J. Peetre, On the theory of Lp,λ spaces. J. Funct. Anal. 4, 71–87 (1969). [CrossRef] [Google Scholar]
- L. C. Piccinini, Inclusioni tra spazi di Morrey. Boll. Un. Mat. Ital. (4) 2, 95–99 (1969). [MathSciNet] [Google Scholar]
- H. Gunawan, D. I. Hakim, K. M. Limanta, and A. A. Masta. Inclusion properties of generalized Morrey spaces. Math. Nachr. 290, 332–340 (2017). [CrossRef] [MathSciNet] [Google Scholar]
- H. Gunawan, D. I. Hakim, and M. Idris, Proper inclusions of Morrey spaces. Glas. Mat. Ser. III 53 (73), no. 1, 143–151 (2018). [CrossRef] [MathSciNet] [Google Scholar]
- H. Gunawan, D. I. Hakim, E. Nakai and Y. Sawano. On inclusion relation between weak Morrey spaces and Morrey spaces, Nonlinear Anal. 168, 27–31 (2018). [CrossRef] [MathSciNet] [Google Scholar]
- Y. Sawano, A non-dense subspace in ℳpq with 1 < q < p < ∞, Trans. A. Razmadze Math. Inst. 171 (3) 379–380 (2017). [CrossRef] [MathSciNet] [Google Scholar]
- Y. Sawano and H. Tanaka, Morrey spaces for non-doubling measures. Acta Math. Sinica, 21 (2005), no. 6, 1535—1544. [CrossRef] [MathSciNet] [Google Scholar]
- D. D. Haroske and L. Skrzypczak, Embeddings of weighted Morrey spaces. Math. Nachr. 290, 1066–1086 (2017). [CrossRef] [MathSciNet] [Google Scholar]
- D. R. Adams, Morrey spaces: Lecture Notes in Applied and Numerical Harmonic Analysis (Springer, Cham, 2015). [CrossRef] [Google Scholar]
- Y. Sawano, G. Di Fazio, and D. I. Hakim, Morrey spaces: Introduction and Applications to Integral Operators and PDE’s Vol. I, Monographs and Research Notes in Mathematics (Chapman & Hall CRC Press, Boca Raton, FL, 2020). [Google Scholar]
- Y. Sawano, G. Di Fazio, and D. I. Hakim, Morrey spaces: Introduction and Applications to Integral Operators and PDE’s Vol. II, Monographs and Research Notes in Mathematics (Chapman & Hall CRC Press, Boca Raton, FL, 2020). [Google Scholar]
- H. Gunawan, E. Kikianty and C. Schwanke, Discrete Morrey spaces and their inclusion properties. Math. Nachr. 291, no. 8-9, 1283–1296 (2018). [CrossRef] [MathSciNet] [Google Scholar]
- D. D. Haroske and L. Skrzypczak, Morrey sequence spaces: Pitt’s theorem and compact embeddings. Constr. Approx. 51, no. 3, 505–535 (2020). [CrossRef] [MathSciNet] [Google Scholar]
- H. Gunawan, D.I. Hakim, and M. Idris, On inclusion properties of discrete Morrey spaces. Georgian Math. J. 29, no. 1, 37–44 (2022). [CrossRef] [MathSciNet] [Google Scholar]
- H. Gunawan, C. Schwanke, The Hardy-Littlewood maximal operator on discrete Morrey spaces, Mediterr. J. Math., 16 24 (2019). [CrossRef] [Google Scholar]
- M. Dinarvand, A family of geometric constants on Morrey spaces, Math. Inequal. Appl. 26, 369–376 (2023). [MathSciNet] [Google Scholar]
- H. Gunawan, E. Kikianty, Y. Sawano and C. Schwanke, Three geometric constants for Morrey spaces, Bull. Korean Math. Soc. 56, no. 6, 1569–1575 (2019). [MathSciNet] [Google Scholar]
- M. Guzmán-Partida, Boundedness and compactness of some operators on discrete Morrey spaces, Comment. Math. Univ. Carol. 2, 151–158 (2021). [Google Scholar]
- E. Kikianty and C. Schwanke, Discrete Morrey spaces are closed subspaces of their continuous counterparts. Banach Center Publications 119, 223–231 (2019). [CrossRef] [Google Scholar]
- L. Huang and D. Yang, On function spaces with mixed norms– a survey. J. Math. Study 54(3), 262–336 (2021). [CrossRef] [MathSciNet] [Google Scholar]
- S. Wu, D. Yang, and W. Yuan, Interpolation of mixed-norm function spaces, Bull. Malays. Math. Sci. Soc. 45 (1), 153–175 (2022). [CrossRef] [MathSciNet] [Google Scholar]
- T. Nogayama, Mixed Morrey spaces. Positivity 23(4), 961–1000 (2019). [CrossRef] [MathSciNet] [Google Scholar]
- M. A. Ragusa and A. Scapellato, Mixed Morrey spaces and their applications to partial differential equations, Nonlinear Anal. 151, 51–65 (2017). [CrossRef] [MathSciNet] [Google Scholar]
- M.O.I.P. Tarigan, R. Gunadi, D.I. Hakim, and Ifronika, Inclusion of mixed Morrey spaces, Adv. Oper. Theory 8, No. 16 (2023). [Google Scholar]
- H. Gunawan, D. I. Hakim, Ifronika, and O. Neswan, Inclusion and geometric properties of mixed Morrey double-sequence spaces. Bull. Malays. Math. Sci. Soc. 47, 132 (2024). [CrossRef] [Google Scholar]
- R. Yudatama, The structure of discrete Morrey Spaces and their intermediate spaces, M.S. Thesis, Institut Teknologi Bandung, Bandung, Indonesia (2024). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.