Open Access
Issue |
ITM Web Conf.
Volume 75, 2025
The Second International Conference on Mathematical Analysis and Its Applications (ICONMAA 2024)
|
|
---|---|---|
Article Number | 03002 | |
Number of page(s) | 7 | |
Section | Operator Theory | |
DOI | https://doi.org/10.1051/itmconf/20257503002 | |
Published online | 21 February 2025 |
- J. Cuntz, Simple C*-algebras generated by isometries. Comm. Math. Phys. 57(2), 173–185 (1977). https://doi.org/10.1007/BF01625776 [CrossRef] [MathSciNet] [Google Scholar]
- M. Izumi, A Cuntz Algebra Approach to the Classification of Near-Group Categories. arXiv (2015). https://doi.org/10.48550/arxiv.1512.04288 [Google Scholar]
- D. E. Dutkay, N. Christoffersen, Representations of Cuntz Algebras Associated to Random Walks on Graphs. arXiv.org (2020). https://arxiv.org/abs/2009.10686 [Google Scholar]
- S. Liu, X. Fang, Extension Algebras of Cuntz Algebra. Journal of Mathematical Analysis and Applications 329(1), 655–663 (2006). https://doi.org/10.1016/j.jmaa.2006.06.081 [Google Scholar]
- S. Liu, X. Fang, Extension Algebras of Cuntz Algebra, II. Bulletin of the Australian Mathematical Society 80(1), 83–90 (2009). https://doi.org/10.1017/s0004972709000227 [CrossRef] [MathSciNet] [Google Scholar]
- D. G. Evans, A. Sims, When is the Cuntz–Krieger Algebra of a Higher-Rank Graph Approximately Finite-Dimensional? Journal of Functional Analysis 263(1), 183–215 (2012). https://doi.org/10.1016/j.jfa.2012.03.024 [CrossRef] [MathSciNet] [Google Scholar]
- M.-D. Choi, F. Latrémolière, Symmetry in the Cuntz Algebra on Two Generators. Journal of Mathematical Analysis and Applications 387(2), 1050–1060 (2012). https://doi.org/10.1016/j.jmaa.2011.10.008 [CrossRef] [MathSciNet] [Google Scholar]
- M. Abe, K. Kawamura, Branching Laws for Endomorphisms of Fermions and the Cuntz Algebra O2. Journal of Mathematical Physics 49(4), 043501 (2008). https://doi.org/10.1063/1.2839921 [CrossRef] [MathSciNet] [Google Scholar]
- K. R. Davidson, C*-algebras by Example (American Mathematical Society, 1996) [Google Scholar]
- G. J. Murphy, C*-Algebras and Operator Theory (Elsevier, 1990), https://doi.org/10.1016/c2009-0-22289-6. [Google Scholar]
- K. Kawamura, Universal Algebra of Sectors. International Journal of Algebra and Computation 19(03), 347–371 (2009). https://doi:10.1142/s0218196709005172 [CrossRef] [MathSciNet] [Google Scholar]
- I. Raeburn, D.P. Williams, Morita Equivalence and Continuous-Trace C∗-Algebras (American Mathematical Soc., 1998) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.