Open Access
Issue
ITM Web Conf.
Volume 75, 2025
The Second International Conference on Mathematical Analysis and Its Applications (ICONMAA 2024)
Article Number 03003
Number of page(s) 6
Section Operator Theory
DOI https://doi.org/10.1051/itmconf/20257503003
Published online 21 February 2025
  1. K. Weierstrass, Über die analytische Darstellbarkeit sogenannter willkürlicher Functionen einer reellen Veränderlichen. Sitzungsberichteder der Akademie zu Berlin, 633-639 and 789–805 (1885). [Google Scholar]
  2. S. N. Bernstein, Démonstration du théoréme de Weierstrass fondée sur le calcul des probabilités. Comm. Soc. Math. Kharkov, 13, 1–2 (1912). [Google Scholar]
  3. O. Szász, Generalization of S. Bernstein’s Polynomials to the Infinite Interval. J. Res. Natl. Bur. Stand, 45 (3), 239–245 (1950). https://doi.org/10.6028/jres.045.024 [CrossRef] [Google Scholar]
  4. G. M. Mirakjan, Approximation of continuous functions with the aid of polynomials. Dokl. Acad. Nauk. SSSR., 31, 201–205 (1941). [Google Scholar]
  5. P. L. Butzer, On the extensions of Bernstein polynomials to the infinite intervals. Proc. Amer. Math. Soc., 5, 547–553, (1954). https://doi.org/10.2307/2032032 [CrossRef] [MathSciNet] [Google Scholar]
  6. V. Totik, Uniform approximation by Szász-Mirakjan type operators. Acta Math. Hungar. 41, 291–307 (1983), https://doi.org/10.1007/bf01961317 [CrossRef] [MathSciNet] [Google Scholar]
  7. D. K. Dubey, R. K. Gangwar, S. Jain, Rate of approximation for certain Szász-MirakyanDurrmeyer operators. Georgian Math. J., 16 (3), 475–487 (2009). https://doi.org/10.1515/GMJ.2009.475 [CrossRef] [MathSciNet] [Google Scholar]
  8. D. K. Dubey, S. Jain, Rate of approximation for integrated Szasz–Mirakjan operators. Demonstr. Math. XLI (4) (2008), https://doi.org/10.1515/dema-2013-0114 [Google Scholar]
  9. N. I. Mahmudov, On q-parametric Szász-Mirakjan operators. Mediterr. J. M., 7 (3), 297311 (2010), https://doi.org/10.1007/s00009-010-0037-0. [Google Scholar]
  10. N. I. Mahmudov, Approximation by the q-Szász-Mirakjan operators. Abstr. Appl. Anal., Article ID 754217 (2012), https://doi.org/10.1155/2012/754217. [CrossRef] [Google Scholar]
  11. E. Baytunç, H. Aktug˘lu, N. I. Mahmudov, A New Generalization of Szasz-Mirakjan Kantorovich Operators for Better Error Estimation. Fundam. J. Math. Appl., 6 (4) 194210, (2023) https://doi.org/10.33401/fujma.1355254 [Google Scholar]
  12. N. I. Mahmudov, M. Kara, New Kantorovich-type Szász-Mirakjan Operators. BIMS, 50:75 (2024) https://doi.org/10.1007/s41980-024-00913-9 [Google Scholar]
  13. Y. Sawano, X. X. Tian, J. Xu, Uniform Boundedness of Szász-Mirakjan-Kantorovich Operators in Morrey Spaces with Variable Exponents. Filomat, 34 (7), 2109–2121 (2020). https://doi.org/10.2298/FIL2007109S. [CrossRef] [MathSciNet] [Google Scholar]
  14. M. P. Arsana, R. Gunadi, D. I. Hakim, Y. Sawano, On the convergence of Kantorovich operators in Morrey spaces. Positivity, 27, 1–11 (2023). https://doi.org/0.1007/s11117-023-01004-5. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.