Open Access
Issue
ITM Web Conf.
Volume 76, 2025
Harnessing Innovation for Sustainability in Computing and Engineering Solutions (ICSICE-2025)
Article Number 03003
Number of page(s) 8
Section IoT & Edge Computing
DOI https://doi.org/10.1051/itmconf/20257603003
Published online 25 March 2025
  1. Al Azad, M. W., Shannigrahi, S., Stergiou, N., Ortega, F. R., & Mastorakis, S. (2021). CLEDGE: A hybrid cloud-edge computing framework over information-centric networking. arXiv. https://arxiv.org/abs/2107.07604 [Google Scholar]
  2. Atienza, D. (2024). Emergent architectures in edge computing for low-latency applications. ResearchGate. https://www.researchgate.net/publication/388559609 Emergent Architectures in Edge Computing for Low-Latency Application [Google Scholar]
  3. Basavegowda Ramu, V. (2023). Edge computing performance amplification. arXiv. https://arxiv.org/abs/2305.16175 [Google Scholar]
  4. Cárdenas, R., Arroba, P., & Risco-Martín, J. L. (2023). Bringing AI to the edge: A formal M&S specification to deploy effective IoT architectures. arXiv.https://arxiv.org/abs/2305.10437 [Google Scholar]
  5. Cui, L., Yang, S., Chen, Z., Pan, Y., & Ming, Z. (2020). A decentralized and trusted edge computing platform for Internet of Things. IEEE Internet of Things Journal, 7(5), 3910–3922. https://doi.org/10.1109/JIOT.2020.2974825 [Google Scholar]
  6. Forti, S., & Brogi, A. (2020). Secure cloud-edge deployments, with trust. Future Generation Computer Systems, 102, 775–788. https://doi.org/10.1016/j.future.2019.09.028 [CrossRef] [Google Scholar]
  7. Ha, K., Pillai, P., Lewis, G., Simanta, S., & Clinch, S. (2013). The case for VM-based cloudlets in mobile computing. IEEE Pervasive Computing, 12(4), 14–23. https://doi.org/10.1109/MPRV.2013.80 [Google Scholar]
  8. Huang, X., Wang, J., Wong, R., & Zhang, J. (2016). Dual-PISA: An index for aggregation operations on time series data. Information Systems, 59, 1–16. https://doi.org/10.1016/j.is.2016.01.002 [Google Scholar]
  9. Kang, R., Wang, C., Wang, P., Ding, Y., & Wang, J. (2018). Exploring RRAM-based memory solutions for edge systems. In Web and Big Data (pp. 482–496). Springer. https://doi.org/10.1007/978-3-319-96893-3_37 [Google Scholar]
  10. Mao, D., Li, T., Huang, X., Yuan, J., & Xu, Y. (2020). The design of Apache IoTDB distributed framework. National Database Conference. https://doi.org/10.1007/978-981-15-2696-4_1 [Google Scholar]
  11. Merenda, M., Porcaro, C., & Iero, D. (2020). Edge machine learning for AI-enabled IoT devices: A review. Sensors, 20(9), 2533. https://doi.org/10.3390/s20092533 [Google Scholar]
  12. Nguyen, T.-D., Huh, E.-N., & Jo, M. (2019). Decentralized and revised content-centric networking-based service deployment and discovery platform in mobile edge computing for IoT devices. IEEE Internet of Things Journal, 6(3), 4162–4175. https://doi.org/10.1109/JIOT.2019.2901840 [Google Scholar]
  13. Satyanarayanan, M., Bahl, P., Cáceres, R., & Davies, N. (2009). The case for VM-based cloudlets in mobile computing. IEEE Pervasive Computing, 8(4), 14–23. https://doi.org/10.1109/MPRV.2009.82 [CrossRef] [Google Scholar]
  14. Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). Edge computing: Vision and challenges. IEEE Internet of Things Journal, 3(5), 637–646. https://doi.org/10.1109/JIOT.2016.2579198 [Google Scholar]
  15. Taleb, T., Dutta, S., Ksentini, A., Iqbal, M., & Flinck, H. (2017). Mobile edge computing potential in making cities smarter. IEEE Communications Magazine, 55(3), 38–43. https://doi.org/10.1109/MCOM.2017.1600249CM [Google Scholar]
  16. Verbelen, T., Simoens, P., De Turck, F., & Dhoedt, B. (2012). Cloudlets: Bringing the cloud to the mobile user. In Proceedings of the third ACM workshop on Mobile cloud computing and services (pp. 29–36). ACM. https://doi.org/10.1145/2307849.2307858 [Google Scholar]
  17. Wang, C., Huang, X., Qiao, J., Jiang, T., & Rui, L. (2020). Apache IoTDB: Time-series database for Internet of Things. Proceedings of the VLDB Endowment, 13(12), 2901–2904. https://doi.org/10.14778/3415478.3415548 [Google Scholar]
  18. Wu, D., Xie, X., Ni, X., Fu, B., Deng, H., Zeng, H., & Qin, Z. (2021). Software-defined edge computing: A new architecture paradigm to support IoT data analysis. arXiv. https://arxiv.org/abs/2104.11645 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.