Open Access
Issue |
ITM Web Conf.
Volume 76, 2025
Harnessing Innovation for Sustainability in Computing and Engineering Solutions (ICSICE-2025)
|
|
---|---|---|
Article Number | 05004 | |
Number of page(s) | 7 | |
Section | Emerging Technologies & Computing | |
DOI | https://doi.org/10.1051/itmconf/20257605004 | |
Published online | 25 March 2025 |
- Basal, M. (2025). Natural language processing for sentiment analysis in social media marketing. Economics World, 12(1), 39–51. [Google Scholar]
- Camacho-Collados, J., Rezaee, K., Riahi, T., Ushio, A., Loureiro, D., Antypas, D., Boisson, J., Espinosa-Anke, L., Liu, F., Martinez-Camara, E., Medina, G., Buhrmann, T., Neves, L., & Barbieri, F. (2022). TweetNLP: Cutting-edge natural language processing for social media. arXiv preprint arXiv:2206.14774. arXiv [Google Scholar]
- Gunasekaran, K. P. (2023). Exploring sentiment analysis techniques in natural language processing: A comprehensive review. arXiv preprint arXiv:2305.14842. [Google Scholar]
- Hasan, M. A. (2024). Ensemble language models for multilingual sentiment analysis. arXiv preprint arXiv:2403.06060. [Google Scholar]
- Joseph, T. (2024). Natural language processing (NLP) for sentiment analysis in social media. International Journal of Computing and Engineering, 6(2), 35–48. CARI Journals [Google Scholar]
- Kapur, K., & Harikrishnan, R. (2022). Comparative study of sentiment analysis for multi-sourced social media platforms. arXiv preprint arXiv:2212.04688. arXiv [Google Scholar]
- Nguyen, Q. H., Nguyen, M. V. T., & Nguyen, K. V. (2024). New benchmark dataset and fine-grained cross-modal fusion framework for Vietnamese multimodal aspect-category sentiment analysis. arXiv preprint arXiv:2405.00001. [Google Scholar]
- Wang, L., & Wang, L. (2022). A case study of Chinese sentiment analysis on social media reviews based on LSTM. arXiv preprint arXiv:2210.17452. [Google Scholar]
- Xie, Y., & Raga Jr, R. C. (2023). Convolutional neural networks for sentiment analysis on Weibo data: A natural language processing approach. arXiv preprint arXiv:2307.06540. [Google Scholar]
- Zhang, W., & Liu, S. (2023). Advancements in natural language processing for sentiment analysis in social media: Techniques and applications. Journal of Artificial Intelligence Research, 68, 123–145. [Google Scholar]
- Derrick, K. (2024). ESG sentiment analysis: Comparing human and language model performance including GPT. arXiv preprint arXiv:2402.16650. [Google Scholar]
- Poria, S., Cambria, E., Bajpai, R., & Hussain, A. (2017). A review of affective computing: From unimodal analysis to multimodal fusion. Information Fusion, 37, 98–125. [Google Scholar]
- Chen, Y., & Li, H. (2022). Deep learning models for sentiment analysis in social media: A survey of challenges and applications. IEEE Access, 10, 123456–123470. [Google Scholar]
- Singh, R., & Kaur, P. (2021). Aspect-based sentiment analysis in social media using transformer models: A review. Information Processing & Management, 58(3), 102438. [Google Scholar]
- Garcia-Dfaz, J. A., & Martin-Valdivia, M. T. (2021). Sentiment analysis in social media: Evolution, challenges, and future directions. Expert Systems with Applications, 173, 114720. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.