Open Access
Issue
ITM Web Conf.
Volume 78, 2025
International Conference on Computer Science and Electronic Information Technology (CSEIT 2025)
Article Number 01003
Number of page(s) 10
Section Deep Learning and Reinforcement Learning – Theories and Applications
DOI https://doi.org/10.1051/itmconf/20257801003
Published online 08 September 2025
  1. Meng, F., Chen, P., Wu, L., & Cheng, J.: 'Power allocation in multi-user cellular networks: Deep reinforcement learning approaches', IEEE Trans. Wireless Commun., 2020, 19, (10), pp. 6255–6267. [Google Scholar]
  2. Fang, C., Zhang, T., Huang, J., Xu, H., Hu, Z., Yang, Y., & Luo, X.: 'A DRL-driven intelligent optimization strategy for resource allocation in cloud-edge-end cooperation environments', Symmetry, 2022, 14, (10), pp. 2120. [Google Scholar]
  3. Xiong, K.: 'Research on resource allocation issues in wireless virtual networks based on deep reinforcement learning' (Master's thesis, University of Electronic Science and Technology of China), 2019. [Google Scholar]
  4. Chowdhury, A., Verma, G., Rao, C., Swami, A., & Segarra, S.: 'Unfolding WMMSE using graph neural networks for efficient power allocation', IEEE Trans. Wireless Commun., 2021, 20, (9), pp. 6004–6017. [Google Scholar]
  5. Qi, R., & Guo, X.: 'Analysis of intelligent energy saving strategy of 4G/5G network based on FP-tree', Procedia Comput. Sci., 2022, 198, pp. 486–492 [Google Scholar]
  6. Shi, W., Li, J., Wu, H., Zhou, C., Cheng, N., & Shen, X.: 'Drone-cell trajectory planning and resource allocation for highly mobile networks: A hierarchical DRL approach', IEEE Internet Things J., 2020, 8, (12), pp. 9800–9813. [Google Scholar]
  7. Pang, G., Liu, W., Li, Y., & Vucetic, B.: 'DRL-based resource allocation in remote state estimation', IEEE Trans. Wireless Commun., 2022, 22, (7), pp. 4434–4448. [Google Scholar]
  8. Nasir, Y. S., & Guo, D.: 'Multi-agent deep reinforcement learning for dynamic power allocation in wireless networks', IEEE J. Sel. Areas Commun., 2019, 37, (10), pp. 2239–2250. [Google Scholar]
  9. Sharara, M., Pamuklu, T., Hoteit, S., Vèque, V., & Erol-Kantarci, M.: 'Policy-gradient-based reinforcement learning for computing resources allocation in O-RAN', in: 2022 IEEE 11th Int. Conf. Cloud Networking (CloudNet), IEEE, 2022, pp. 229–236 [Google Scholar]
  10. Cheng, M., Li, J., & Nazarian, S.: 'DRL-cloud: Deep reinforcement learning-based resource provisioning and task scheduling for cloud service providers', in: 2018 23rd Asia South Pacific Design Autom. Conf. (ASP-DAC), IEEE, 2018, pp. 129–134 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.