Open Access
| Issue |
ITM Web Conf.
Volume 78, 2025
International Conference on Computer Science and Electronic Information Technology (CSEIT 2025)
|
|
|---|---|---|
| Article Number | 01013 | |
| Number of page(s) | 9 | |
| Section | Deep Learning and Reinforcement Learning – Theories and Applications | |
| DOI | https://doi.org/10.1051/itmconf/20257801013 | |
| Published online | 08 September 2025 | |
- Lowe, R., Wu, Y., Tamar, A., et al.: 'Multi-agent actor-critic for mixed cooperative-competitive environments'. Proc. Adv. Neural Inf. Process. Syst., Long Beach, CA, USA, December 14, pp. 6379 [Google Scholar]
- Foerster, J., Farquhar, G., Afouras, T., et al.: 'Counterfactual multi-agent policy gradients'. Proc. 32nd AAAI Conf. Artif. Intell. (AAAI-18), New Orleans, LA, USA, February 2018, pp. 2974–2982 [Google Scholar]
- Tan, M.: 'Multi-agent reinforcement learning: Independent vs. cooperative agents'. Proc. 10th Int. Conf. Mach. Learn., Amherst, MA, USA, June 1993, pp. 330–337 [Google Scholar]
- Tessera, K.A., Rahman, A., Albrecht, S.V., et al.: 'HyperMARL: Adaptive hypernetworks for multi-agent RL'. arXiv Prepr., 2024, arXiv:2412.04233 [Google Scholar]
- Samvelyan, M., Rashid, T., de Witt, C.S., et al.: 'The StarCraft Multi-Agent Challenge'. arXiv Prepr., 2019, arXiv:1902.04043 [Google Scholar]
- Vinyals, O., Ewalds, T., Bartunov, S., et al.: 'StarCraft II: A new challenge for reinforcement learning'. arXiv Prepr., 2017, arXiv:1708.04782 [Google Scholar]
- Deng, Y., Yu, Y., Ma, W., et al.: 'SMAC-Hard: Enabling mixed opponent strategy script and self-play on SMAC'. arXiv Prepr., 2024, arXiv:2412.17707 [Google Scholar]
- Rashid, T., Samvelyan, M., Schroeder, C., et al.: 'QMIX: Monotonic value function factorisation for deep multi-agent reinforcement learning'. Proc. 35th Int. Conf. Mach. Learn., Stockholm, Sweden, July 14, pp. 4295 [Google Scholar]
- Yu, C., Velu, A., Vinitsky, E., et al.: 'The surprising effectiveness of MAPPO in cooperative multi-agent games'. Proc. Adv. Neural Inf. Process. Syst., New Orleans, LA, USA, December 14, pp. 2345 [Google Scholar]
- Du, W., Ding, S., Zhang, C., et al.: 'Multiagent reinforcement learning with heterogeneous graph attention network', IEEE Trans. Neural Netw. Learn. Syst., 2023, 34, (10), pp. 6851–6860 [Google Scholar]
- Zhang, S., Shen, L., Han, L.: 'Learning meta representations for agents in multi-agent reinforcement learning'. arXiv Prepr., 2021, arXiv:2108.12988 [Google Scholar]
- Rashid, T., Samvelyan, M., Farquhar, G., et al.: 'Weighted QMIX: Expanding monotonic value function factorisation'. Proc. Adv. Neural Inf. Process. Syst., Virtual, December 14, pp. 12345 [Google Scholar]
- Long, Y., Chen, Z., Zhang, Y., et al.: 'Towards effective multi-agent reinforcement learning in Terran combat scenarios'. Proc. 19th Int. Conf. Auton. Agents Multiagent Syst., Auckland, New Zealand, May 14, pp. 123 [Google Scholar]
- Sunehag, P., Lever, G., Gruslys, A., et al.: 'Value-decomposition networks for cooperative multi-agent learning'. arXiv Prepr., 2017, arXiv:1706.05296 [Google Scholar]
- Wang, J., Ren, Z., Liu, T., et al.: 'QPLEX: Duplex dueling multi-agent Q-learning'. Proc. 9th Int. Conf. Learn. Represent., Vienna, Austria, May 14, pp. 1 [Google Scholar]
- Chen, X., Wang, Y., Tang, H., et al.: 'Transformer-based multi-agent reinforcement learning for StarCraft micromanagement'. Proc. 36th AAAAI Conf. Artif. Intell. (AAAI-22), Virtual, February 14, pp. 11289 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.

