Error
  • The authentification system partialy failed, sorry for the inconvenience. Please try again later.
Open Access
Issue
ITM Web Conf.
Volume 78, 2025
International Conference on Computer Science and Electronic Information Technology (CSEIT 2025)
Article Number 01012
Number of page(s) 12
Section Deep Learning and Reinforcement Learning – Theories and Applications
DOI https://doi.org/10.1051/itmconf/20257801012
Published online 08 September 2025
  1. Liebman, E., Saar-Tsechansky, M., Stone, P., et al.: 'The right music at the right time: Adaptive personalized playlists based on sequence modeling', MIS Quarterly, 2019, 43, (3), pp. 765–789 [Google Scholar]
  2. Abdolmaleki, A., & Rezvani, M. H.: 'optimal context - aware content - based movie recommender system using genetic algorithm: a case study on MovieLens dataset', Journal of Experimental & Theoretical Artificial Intelligence, 2024, 36, (8), pp 1485 - 1511 [Google Scholar]
  3. Wei, J., Li, Y., Zhang, T., et al.: 'Multi - stage dynamic Bayesian network for user shopping phase modeling', Decision Support Systems, 2024, 178, 114032 [Google Scholar]
  4. Bi, X., Yang, M. C., Adomavicius, G., et al.: 'Consumer acquisition for recommender systems: A theoretical framework and empirical evaluations', Information Systems Research, 2024, 35, (1), pp. 101–150. [Google Scholar]
  5. Adamopoulos, P., Ghose, A., Tuzhilin, A., et al.: 'Heterogeneous demand effects of recommendation strategies in a mobile application: Evidence from econometric models and machine - learning instruments', MIS Quarterly, 2022, 46, (1), pp. 101–150 [Google Scholar]
  6. Farashah, M. V., Etebarian, A., Azmi, R., et al.: 'A hybrid recommender system based - on link prediction for movie baskets analysis', Journal of Big Data, 2021, 8, (1), pp. 32. [Google Scholar]
  7. Farahani, M. G., Torkestani, J. A., Rahmani, M., et al.: 'Dynamic user profile for adaptive personalized recommender system using learning automata', Multimedia Tools and Applications, 14, pp. 1 [Google Scholar]
  8. Chen, X., Yao, L., McAuley, J., et al.: 'Deep reinforcement learning in recommender systems: A survey and new perspectives', Knowledge - Based Systems, 2023, 264, pp 1 - 19 [Google Scholar]
  9. Fu, M., Huang, L., Rao, A., et al.: 'A Deep Reinforcement Learning Recommender System With Multiple Policies for Recommendations', IEEE Transactions on Industrial Informatics, 2023, 19(2), pp 2049 - 2061 [Google Scholar]
  10. Kokkodis, M., & Ipeirotis, P. G.: 'Demand-aware career path recommendations: A reinforcement learning approach', Management Science, 2021, 67(7), pp 4362–4383 [Google Scholar]
  11. Bukhari, M., Maqsood, M., Adil, F., et al.: 'An actor - critic based recommender system with context - aware user modeling', Artificial Intelligence Review, 2025, 58, (5), pp. 138–160 [Google Scholar]
  12. Pang, G. Y., Wang, X. M., Wang, L., et al.: 'Efficient deep reinforcement learning - enabled recommendation with hierarchical attention and sample - enhanced priority experience replay', IEEE Transactions on Network Science and Engineering, 2023, 10, (2), pp. 871–886 [Google Scholar]
  13. Ambikesh, G., Rao, S. S., Chandrasekaran, K., et al.: 'A grasshopper optimization algorithm - based movie recommender system', Multimedia Tools and Applications, 14, pp. 1 [Google Scholar]
  14. Yadav, V., Shukla, R., Tripathi, A., et al.: 'A New Approach for Movie Recommender System using K - means Clustering and PCA', Journal of Scientific & Industrial Research, 2021, 80, (2), pp. 159–165 [Google Scholar]
  15. Sahu, S., Kumar, R., Pathan, M. S., et al.: 'Movie Popularity and Target Audience Prediction Using the Content - Based Recommender System', IEEE Access, 2022, 10, pp 42030 - 42046 [Google Scholar]
  16. Huang, G. J., Zhu, X. T., Wasti, S. H., et al.: 'Multi - knowledge resources - based semantic similarity models with application for movie recommender system', Artificial Intelligence Review, 2023, 56, (SUPPL 2), pp. 2151–2182 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.