Open Access
Issue
ITM Web Conf.
Volume 78, 2025
International Conference on Computer Science and Electronic Information Technology (CSEIT 2025)
Article Number 01016
Number of page(s) 7
Section Deep Learning and Reinforcement Learning – Theories and Applications
DOI https://doi.org/10.1051/itmconf/20257801016
Published online 08 September 2025
  1. Berner, C., Brockman, G., Chan, B., et al.: 'Dota 2 with large scale deep reinforcement learning'. arXiv preprint arXiv:1912.06680, 2019 [Google Scholar]
  2. Matulis, M., Harvey, C.: 'A robot arm digital twin utilising reinforcement learning'. Computers & Graphics, 2021, 95: 106–114 [Google Scholar]
  3. Huang, J. H.: 'Research on Computer Go Based on Variable Scale Training and Parallel Monte Carlo Tree Search'. Guangxi University, 2023. DOI:https://doi.org/10.27034/d.cnki.ggxiu.2023.002248 [Google Scholar]
  4. Demura, Y., Kaneko, T.: 'Initial state diversification for efficient AlphaZero-style training'. ICGA Journal, 2024, 46(2): 40–66 [Google Scholar]
  5. Ghorbani, J., Aghdasi, S., Nazem, M., et al.: 'Parameters in play: AlphaZero-Inspired AI for autonomous parameter identification in soil constitutive and finite element models'. Computers and Geotechnics, 2024, 174: 106657 [Google Scholar]
  6. Lin, Y. C.: 'Research on Go Game Based on Deep Learning and Monte Carlo Tree Search'. Harbin Institute of Technology, 2018 [Google Scholar]
  7. Zhang, S., Long, Q., Kong, Y. N. et al.: 'Principles and Methods of AlphaGo Series Algorithms for Go Artificial Intelligence'. Science & Technology Review, 2023, 41(07):79–97 [Google Scholar]
  8. Schrittwieser, J., Antonoglou, I., Hubert, T., et al.: 'Mastering Atari Go chess and Shogi by planning with a learned model'. Nature, 2020, 588(7839): 604–609 [Google Scholar]
  9. Silver, D., Schrittwieser, J., Simonyan, K., et al.: 'Mastering the game of Go without human knowledge'. Nature, 2017,550(7676):354–359 [CrossRef] [Google Scholar]
  10. Holcomb, S. D., Porter, W. K., Ault, S. V., et al.: 'Overview on deepmind and its alphago zero ai', Proceedings of the 2018 international conference on big data and education. 2018: 67-71 [Google Scholar]
  11. Fu, M. C.: 'Simulation-based algorithms for Markov decision processes: Monte Carlo tree search from AlphaGo to AlphaZero'. Asia-Pacific Journal of Operational Research, 2019, 36 (06): 1940009 [Google Scholar]
  12. Silver, D., Huang, A., Maddison, C. J., et al.: 'Mastering the game of Go with deep neural networks and tree search'. Nature, 2016, 529(7587): 484–489 [CrossRef] [Google Scholar]
  13. DeepMind.master-series-60-online-games. [2022-08-31]. https://www.deepmind.com/research/highlighted-research/alphago/master-series-60-online-games [Google Scholar]
  14. Zhao, D. B., Shao, K., Zhu, Y. H. et al.: 'A Review of Deep Reinforcement Learning: A Discussion on the Development of Computer Go'. Control Theory and Applications, 2016, 33(6): 701–717 [Google Scholar]
  15. Liu, P. S.: 'Exploration of the first-hand balance point in Gomoku based on reinforcement learning and Monte Carlo tree search'. Sichuan University, 2023 [Google Scholar]
  16. Tang, C., Tang, Y. R., Ma, Y. L.: 'The Principle and Implications of AlphaZero'. Aero Weaponry, 2020, 27(03): 27–36 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.