Open Access
| Issue |
ITM Web Conf.
Volume 78, 2025
International Conference on Computer Science and Electronic Information Technology (CSEIT 2025)
|
|
|---|---|---|
| Article Number | 01017 | |
| Number of page(s) | 12 | |
| Section | Deep Learning and Reinforcement Learning – Theories and Applications | |
| DOI | https://doi.org/10.1051/itmconf/20257801017 | |
| Published online | 08 September 2025 | |
- Zhang, Z., Niu, K., Liu, Y.: 'A Deep Learning Based Online Credit Scoring Model for P2P Lending', IEEE, 2020, 8, pp. 177307–177317 [Google Scholar]
- Abdelfattah, E., Joshi, J., Tiwari, S.: 'Machine and Deep Learning Models for Stress Detection Using Multimodal Physiological Data', IEEE, 2025, 13, pp. 4597–4608 [Google Scholar]
- Ma, Y., Qiu, Y., Zhao, W., et al.: 'DCIM-GCN: Digital Computing-in-Memory Accelerator for Graph Convolutional Network', IEEE, 2024, 71, (6), pp. 2735–2748 [Google Scholar]
- Zhong, K., Yang, Z., Yu, S., et al.: 'Deep Reinforcement Learning-Based Multi-Layer Cascaded Resilient Recovery for Cyber-Physical Systems', IEEE, 2024, 17, (6), pp. 3330–3344 [Google Scholar]
- Breiman, L.: 'Random Forests', Machine Learning, 2001, 45, (1), pp. 5–32 [Google Scholar]
- Silver, D., Lever, G., Heess, N., et al.: 'Deterministic Policy Gradient Algorithms', Proc. 31st Int. Conf. Mach. Learn. 2014, vol. 32, no. 1, pp. 387–395 [Google Scholar]
- Schulman, J., Wolski, F., Dhariwal, P., et al.: 'Proximal Policy Optimization Algorithms', arXiv preprint arXiv:1707.06347, 2017 [Google Scholar]
- Mnih, V., Kavukcuoglu, K., Silver, D., et al.: 'Playing Atari with Deep Reinforcement Learning', arXiv preprint arXiv:1312.5602, 2013 [Google Scholar]
- Mnih, V., Kavukcuoglu, K., Silver, D., et al.: 'Human-Level Control through Deep Reinforcement Learning', Nature, 2015, 518, (7540), pp. 529–533 [CrossRef] [PubMed] [Google Scholar]
- Kipf, T.N., Welling, M.: 'Semi-Supervised Classification with Graph Convolutional Networks', arXiv preprint arXiv:1609.02907, 2016 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.

