Open Access
| Issue |
ITM Web Conf.
Volume 78, 2025
International Conference on Computer Science and Electronic Information Technology (CSEIT 2025)
|
|
|---|---|---|
| Article Number | 01030 | |
| Number of page(s) | 13 | |
| Section | Deep Learning and Reinforcement Learning – Theories and Applications | |
| DOI | https://doi.org/10.1051/itmconf/20257801030 | |
| Published online | 08 September 2025 | |
- Xiong, G., Li, J.: 'Finite-time analysis of whittle index based Q-learning for restless multi-armed bandits with neural network function approximation', Advances in Neural Information Processing Systems, 2023, 36, pp. 29048–29073 [Google Scholar]
- Kietzmann, T.C., McClure, P., Kriegeskorte, N.: 'Deep neural networks in computational neuroscience', BioRxiv, 2017, 133504 [Google Scholar]
- Song, S., Kidziński, Ł., Peng, X.B., et al.: 'Deep reinforcement learning for modeling human locomotion control in neuromechanical simulation', Journal of Neuroengineering and Rehabilitation, 2021, 18, pp. 1–17 [Google Scholar]
- Cross, L., Cockburn, J., Yue, Y., O'Doherty, J.P.: 'Using deep reinforcement learning to reveal how the brain encodes abstract state-space representations in high-dimensional environments', Neuron, 2021, 109, (4), pp. 724–738 [Google Scholar]
- Jensen, K.T.: 'An introduction to reinforcement learning for neuroscience', arXiv:2311.07315, 2023 [Google Scholar]
- Azizzadenesheli, K., Brunskill, E., Anandkumar, A.: 'Efficient exploration through bayesian deep q-networks'. Proc. Information Theory and Applications Workshop (ITA), 2018, pp. 1–9 [Google Scholar]
- Stimberg, M., Brette, R., Goodman, D.F.: 'Brian 2, an intuitive and efficient neural simulator', eLife, 2019, 8, e47314 [CrossRef] [PubMed] [Google Scholar]
- Cannelli, L., Nuti, G., Sala, M., Szehr, O.: 'Hedging using reinforcement learning: Contextual k-armed bandit versus Q-learning', The Journal of Finance and Data Science, 2023, 9, 100101 [Google Scholar]
- Xu, Z., Bollig, B., Függer, M., Nowak, T.: 'Permutation equivariant deep reinforcement learning for multi-armed bandit'. Proc. IEEE 36th Int. Conf. Tools with Artificial Intelligence (ICTAI), 2024, pp. 975–983 [Google Scholar]
- Collier, M., Llorens, H.U.: 'Deep contextual multi-armed bandits', arXiv:1807.09809, 2018 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.

