Open Access
| Issue |
ITM Web Conf.
Volume 78, 2025
International Conference on Computer Science and Electronic Information Technology (CSEIT 2025)
|
|
|---|---|---|
| Article Number | 04007 | |
| Number of page(s) | 8 | |
| Section | Foundations and Frontiers in Multimodal AI, Large Models, and Generative Technologies | |
| DOI | https://doi.org/10.1051/itmconf/20257804007 | |
| Published online | 08 September 2025 | |
- Li, T., et al.: Federated optimization in heterogeneous networks. MLSys (2020). [Google Scholar]
- Konečný, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.: Federated Learning: Strategies for Improving Communication Efficiency. arXiv:1610.05492 (2016). [Google Scholar]
- Smith, S.L., Kindermans, P.-J., Le, Q.V.: Don’t Decay the Learning Rate, Increase the Batch Size. Proc. ICLR (2018). [Google Scholar]
- Ying, C., Kumar, S., Chen, D., Wang, T., Cheng, Y.: Image Classification at Supercomputer Scale. Proc. NeurIPS (2019). [Google Scholar]
- Chen, Y., Sun, X., Jin, Y.: Communication-Efficient Federated Learning with Adaptive Batch Sizes. Proc. ICML (2021). [Google Scholar]
- Zhao, M., Sinha, A., Dai, W., Yu, X., Liang, K.: Federated Learning with Non-IID Data via Local and Global Distillation. Proc. AAAI (2022). [Google Scholar]
- Sattler, F., Wiedemann, S., Müller, K.-R., Samek, W.: Robust and Communication-Efficient Federated Learning from Non-IID Data. IEEE Trans. Neural Netw. Learn. Syst., 31(9) (year not provided). [Google Scholar]
- Mohri, M., Sivek, G., Suresh, A.T.: Agnostic Federated Learning. Proc. ICML (2019). [Google Scholar]
- Karimireddy, S.P., et al.: SCAFFOLD: Stochastic Controlled Averaging for Federated Learning. ICML (2020). [Google Scholar]
- Chen, Y., et al.: Federated Learning with Adaptive Batches: A Dynamic Local Step Approach. IEEE transactions on neural networks and learning systems, (2022). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.

