Error
  • The authentification system partialy failed, sorry for the inconvenience. Please try again later.
Open Access
Issue
ITM Web Conf.
Volume 78, 2025
International Conference on Computer Science and Electronic Information Technology (CSEIT 2025)
Article Number 04026
Number of page(s) 11
Section Foundations and Frontiers in Multimodal AI, Large Models, and Generative Technologies
DOI https://doi.org/10.1051/itmconf/20257804026
Published online 08 September 2025
  1. Li, L., Chu, W., Langford, J., et al.: ‘A contextual-bandit approach to personalized news article recommendation’. Proc. 19th Int. Conf. World Wide Web, Raleigh, NC, USA, Apr. 2010, pp. 661–670 [Google Scholar]
  2. Agrawal, S., Goyal, N.: ‘Thompson sampling for contextual bandits with linear payoffs’. Proc. Int. Conf. Machine Learning (ICML), Atlanta, GA, USA, May 2013, pp. 127–135 [Google Scholar]
  3. Gao, C., Zheng, Y., Wang, W., et al.: ‘Causal inference in recommender systems: A survey and future directions’, ACM Trans. Inf. Syst., 2024, 42, (4), pp. 1–32 [Google Scholar]
  4. Krishen, A.S., Dwivedi, Y.K., Bindu, N., et al.: ‘A broad overview of interactive digital marketing: A bibliometric network analysis’, J. Bus. Res., 2021, 131, pp. 183–195 [CrossRef] [Google Scholar]
  5. Chapelle, O., Li, L.: ‘An empirical evaluation of Thompson sampling’, Adv. Neural Inf. Process. Syst., 2011, 24, pp. 2249–2257 [Google Scholar]
  6. Slivkins, A.: ‘Introduction to multi-armed bandits’, Found. Trends Mach. Learn., 2019, 12, (1-2), pp. 1–286 [Google Scholar]
  7. Russo, D.J., Van Roy, B., Kazerouni, A., et al.: ‘A tutorial on Thompson sampling’, Found. Trends Mach. Learn., 2018, 11, (1), pp. 1–96 [CrossRef] [Google Scholar]
  8. Da’u, A., Salim, N.: ‘Recommendation system based on deep learning methods: A systematic review and new directions’, Artif. Intell. Rev., 2020, 53, (4), pp. 2709–2748 [Google Scholar]
  9. Deng, Z., Yang, X., Xu, S., et al.: ‘Libre: A practical Bayesian approach to adversarial detection’. Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), virtual, June 2021, pp. 972–982 [Google Scholar]
  10. Shi, C., Shen, C., Yang, J.: ‘Federated multi-armed bandits with personalization’. Proc. Int. Conf. Artif. Intell. Stat. (AISTATS), virtual, Mar. 2021, pp. 2917–2925 [Google Scholar]
  11. Korda, N., Szorenyi, B., Li, S.: ‘Distributed clustering of linear bandits in peer to peer networks’. Proc. Int. Conf. Machine Learning (ICML), New York, NY, USA, June 2016, pp. 1301–1309 [Google Scholar]
  12. Bouneffouf, D., Rish, I., Aggarwal, C.: ‘Survey on applications of multi-armed and contextual bandits’. Proc. IEEE Congr. Evol. Comput. (CEC), Glasgow, UK, July 2020, pp. 1–8 [Google Scholar]
  13. Wang, H., Zhang, F., Xie, X., et al.: ‘DKN: Deep knowledge-aware network for news recommendation’. Proc. Web Conf. (WWW), Lyon, France, Apr. 2018, pp. 1835–1844 [Google Scholar]
  14. Finn, C., Abbeel, P., Levine, S.: ‘Model-agnostic meta-learning for fast adaptation of deep networks’. Proc. Int. Conf. Machine Learning (ICML), Sydney, Australia, Aug. 2017, pp. 1126–1135 [Google Scholar]
  15. Chen, J., Dong, H., Wang, X., et al.: ‘Bias and debias in recommender system: A survey and future directions’, ACM Trans. Inf. Syst., 2023, 41, (3), pp. 1–39 [Google Scholar]
  16. Hayes, C.F., Rădulescu, R., Bargiacchi, E., et al.: ‘A practical guide to multi-objective reinforcement learning and planning’, Auton. Agents Multi-Agent Syst., 2022, 36, (1), pp. 1–46 [Google Scholar]
  17. Agrawal, S., Devanur, N.R.: ‘Bandits with concave rewards and convex knapsacks’. Proc. 15th ACM Conf. Economics and Computation (EC), Palo Alto, CA, USA, June 2014, pp. 989–1006 [Google Scholar]
  18. Wu, L., Chen, L., Shao, P., et al.: ‘Learning fair representations for recommendation: A graph-based perspective’. Proc. Web Conf. (WWW), Ljubljana, Slovenia, Apr. 2021, pp. 2198–2208 [Google Scholar]
  19. Yang, Y., Zhai, P.: ‘Click-through rate prediction in online advertising: A literature review’, Inf. Process. Manag., 2022, 59, (2), 102853 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.