Open Access
| Issue |
ITM Web Conf.
Volume 79, 2025
International Conference on Knowledge Engineering and Information Systems (KEIS-2025)
|
|
|---|---|---|
| Article Number | 01035 | |
| Number of page(s) | 8 | |
| DOI | https://doi.org/10.1051/itmconf/20257901035 | |
| Published online | 08 October 2025 | |
- A. Agarwal, D.S. Mishra, S.V. Kolekar, Knowledge-based recommendation system using semantic web rules based on learning styles for MOOCs. Cogent Eng. 9, 2022568 (2022). https://doi.org/10.1080/23311916.2021.2022568 [Google Scholar]
- O. Hamal, N.E. El Faddouli, M.H.A. Harouni, J. Lu, Artificial intelligent in education. Sustainability 14, 2862 (2022). https://doi.org/10.3390/su14052862 [Google Scholar]
- M.W. Spitzer, L. Bardach, Y. Strittmatter, J. Meyer, K. Moeller, Evaluating the content structure of intelligent tutor systems—a psychological network analysis. Comput. Educ. Open 7, 100198 (2024). https://doi.org/10.1016/j.caeo.2024.100198 [Google Scholar]
- C. Wang, P. Yue, Learning resource recommendation model based on collaborative knowledge graph attention networks. IEEE Access 12, 153232–153242 (2024). https://doi.org/10.1109/ACCESS.2024.3477740 [Google Scholar]
- S. Liu, X. Guo, X. Hu, X. Zhao, Advancing generative intelligent tutoring systems with GPT-4: design, evaluation, and a modular framework for future learning platforms. Electron. 13, 4876 (2024). https://doi.org/10.3390/electronics13244876 [Google Scholar]
- B. Bali, E.J. Garba, A.S. Ahmadu, K.T. Takwate, Y.M. Malgwi, Analysis of emerging trends in artificial intelligence for education in Nigeria. Discov. Artif. Intell. 4, 110 (2024). https://doi.org/10.1007/s44163-024-00163-y [Google Scholar]
- L. Rodrigues, G. Guerino, T.E. Silva, G.C. Challco, L. Oliveira, R.S. da Penha, R.F. Melo, T. Vieira, M. Marinho, V. Macario, I.I. Bittencourt, Mathaide: a qualitative study of teachers’ perceptions of an ITS unplugged for underserved regions. Int. J. Artif. Intell. Educ. 35, 2–30 (2025). https://doi.org/10.1007/s40593-024-00397-y [Google Scholar]
- U.L. Yuhana, A. Djunaidy, M.H. Purnomo, Enhancing students performance through dynamic personalized learning path using ant colony and item response theory (ACOIRT). Comput. Educ. Artif. Intell. 7, 100280 (2024). https://doi.org/10.1016/j.caeai.2024.100280 [Google Scholar]
- B. Alnasyan, M. Basheri, M. Alassafi, K. Alnasyan, Kanformer: an attention-enhanced deep learning model for predicting student performance in virtual learning environments. Soc. Netw. Anal. Min. 15, 25 (2025). https://doi.org/10.1007/s13278-025-01446-7 [Google Scholar]
- W. Cao, N.T. Mai, W. Liu, Adaptive knowledge assessment via symmetric hierarchical Bayesian neural networks with graph symmetry-aware concept dependencies. Symmetry 17, 1332 (2025). https://doi.org/10.3390/sym17081332 [Google Scholar]
- S. Hakkal, A. Ait Lahcen, XGBoost to enhance learner performance prediction. Comput. Educ. Artif. Intell. 7, 100254 (2024). https://doi.org/10.1016/j.caeai.2024.100254 [Google Scholar]
- M. Zhu, L. Qiu, J. Zhou, Meta-path structured graph pre-training for improving knowledge tracing in intelligent tutoring. Expert Syst. Appl. 254, 124451 (2024). https://doi.org/10.1016/j.eswa.2024.124451 [Google Scholar]
- D. Wang, Q. Yang, X. Wu, Z. Wu, J. Zhang, S. He, Multi-behavior enhanced group recommendation for smart educational services. Discov. Comput. 28, 49 (2025). https://doi.org/10.1007/s10791-025-09553-x [Google Scholar]
- W. Zhang, S. Hu, K. Qu, Graph attention neural network model with behavior features for knowledge tracking. IEEE Access 11, 88329–88338 (2023). https://doi.org/10.1109/ACCESS.2023.3300703 [Google Scholar]
- The EdNet dataset link: https://github.com/riiid/EdNet (accessed on 9th September 2025). [Google Scholar]
- The assistment17 dataset link: https://www.kaggle.com/datasets/nicolaswattiez/skillbuilder-data-2009-2010, (accessed on 9th September 2025). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.

