Error
  • The authentification system partialy failed, sorry for the inconvenience. Please try again later.
Open Access
Issue
ITM Web Conf.
Volume 79, 2025
International Conference on Knowledge Engineering and Information Systems (KEIS-2025)
Article Number 01036
Number of page(s) 8
DOI https://doi.org/10.1051/itmconf/20257901036
Published online 08 October 2025
  1. S.K. Henge, N.R. Viraati, M. Alhussein, A.S. Kushwaha, K. Aurangzeb, R. Singh, Detection of diabetic retinopathy using a multi-decision Inception-ResNet-blended hybrid model. IEEE Access 13, 8988–9005 (2025). https://doi.org/10.1109/ACCESS.2024.3525154 [Google Scholar]
  2. K. Anitha, P.S. Prabha, K.S. Rekha, M.V. Prem, J.J. Amarnath, Detecting diabetic retinopathy using a hybrid ensemble XL machine model with dual weighted-kernel ELM and improved mayfly optimization. Expert Syst. Appl. 253, 124221 (2024). https://doi.org/10.1016/j.eswa.2023.124221 [Google Scholar]
  3. M.S.B. Phridviraj, R. Bhukya, S. Madugula, A. Manjula, S. Vodithala, M.S. Waseem, A bidirectional long short-term memory-based diabetic retinopathy detection model using retinal fundus images. Healthc. Anal. 3, 100174 (2023). https://doi.org/10.1016/j.health.2023.100174 [Google Scholar]
  4. P. Bidwai, S. Gite, B. Pradhan, H. Gupta, A. Alamri, Harnessing deep learning for detection of diabetic retinopathy in geriatric group using optical coherence tomography angiography-OCTA: a promising approach. MethodsX 13, 102910 (2024). https://doi.org/10.1016/j.mex.2024.102910 [Google Scholar]
  5. M. Yinghua, Y. Heng, R. Amarnath, Z. Hui, Hard exudates segmentation in diabetic retinopathy using DiaRetDB1. IEEE Access 12, 126486–126502 (2024). https://doi.org/10.1109/ACCESS.2024.3455433 [Google Scholar]
  6. R. Romero-Oraá, M. Herrero-Tudela, M.I. López, R. Hornero, M. García, Attention-based deep learning framework for automatic fundus image processing to aid in diabetic retinopathy grading. Comput. Methods Programs Biomed. 249, 108160 (2024). https://doi.org/10.1016/j.cmpb.2024.108160 [Google Scholar]
  7. O. Dib, A decentralized privacy-preserving framework for diabetic retinopathy detection using federated learning and blockchain. Results Eng. 26, 105456 (2025). https://doi.org/10.1016/j.rineng.2025.105456 [Google Scholar]
  8. I. Govindharaj, A. Poongodai, D. Santhakumar, S. Ravichandran, R. Vijaya Prabhu, K. Udayakumar, S. Yazhinian, Enhanced diabetic retinopathy detection using U-shaped network and capsule network-driven deep learning. MethodsX 14, 103052 (2025). https://doi.org/10.1016/j.mex.2024.103052 [Google Scholar]
  9. E. Ramezanzadeh, N. Shoeibi, A. Feizabadi, T. Banaee, M.H.B. Tussi, M. Tavakoli, Automated detection of hard exudates in retinal fundus images for diabetic retinopathy screening using texturalbased radon transform and morphology reconstruction. Biomed. Eng. Adv. 9, 100180 (2025). https://doi.org/10.1016/j.bea.2025.100180 [Google Scholar]
  10. A. Jabbar, S. Naseem, J. Li, T. Mahmood, M.K. Jabbar, A. Rehman, T. Saba, Deep transfer learning-based automated diabetic retinopathy detection using retinal fundus images in remote areas. Int. J. Comput. Intell. Syst. 17, 135 (2024). https://doi.org/10.1007/s44196-024-00520-w [Google Scholar]
  11. K.A. Alavee, M. Hasan, A.H. Zillanee, M. Mostakim, J. Uddin, E.S. Alvarado, I. de la Torre Diez, I. Ashraf, M.A. Samad, Enhancing early detection of diabetic retinopathy through the integration of deep learning models and explainable artificial intelligence. IEEE Access 12, 7395073969 (2024). https://doi.org/10.1109/ACCESS.2024.3405570 [Google Scholar]
  12. V. Thanikachalam, K. Kabilan, S.K. Erramchetty, Optimized deep CNN for detection and classification of diabetic retinopathy and diabetic macular edema. BMC Med. Imaging 24, 227 (2024). https://doi.org/10.1186/s12880-024-01406-1 [Google Scholar]
  13. S. Krishnamoorthy, Y. Weifeng, J. Luo, S. Kadry, GO-DBN: gannet optimized deep belief networkbased wavelet kernel ELM for detection of diabetic retinopathy. Expert Syst. Appl. 229, 120408 (2023). https://doi.org/10.1016/j.eswa.2023.120408 [Google Scholar]
  14. S.J. Sidiq, T. Benil, A lightweight transfer learningbased ensemble approach for diabetic retinopathy detection. Int. J. Inf. Manag. Data Insights 5, 100372 (2025). https://doi.org/10.1016/j.jjimei.2025.100372 [Google Scholar]
  15. The Messidor-2 dataset link: https://www.kaggle.com/datasets/mariaherrerot/messidor2preprocess?select=messidor-2 (accessed on 30th August 2025) [Google Scholar]
  16. The IDRiD dataset link: https://www.kaggle.com/datasets/aaryapatel98/indian-diabetic-retinopathy-image-dataset (accessed on 30th August 2025) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.