Error
  • The authentification system partialy failed, sorry for the inconvenience. Please try again later.
Open Access
Issue
ITM Web Conf.
Volume 79, 2025
International Conference on Knowledge Engineering and Information Systems (KEIS-2025)
Article Number 01037
Number of page(s) 7
DOI https://doi.org/10.1051/itmconf/20257901037
Published online 08 October 2025
  1. Y. Miao, W. Meng, X. Zhou, SerpensGate- YOLOv8: An enhanced YOLOv8 model for accurate plant disease detection. Front. Plant Sci. 15, 1514832 (2025). https://doi.org/10.3389/fpls.2025.1514832 [Google Scholar]
  2. Y. Wang, P. Zhang, S. Tian, Tomato leaf disease detection based on attention mechanism and multiscale feature fusion. Front. Plant Sci. 15, 1382802 (2024). https://doi.org/10.3389/fpls.2024.1382802 [Google Scholar]
  3. K. Joshi, S. Hooda, A. Sharma, H. Sonah, R. Deshmukh, N. Tuteja, S.S. Gill, R. Gill, Precision diagnosis of tomato diseases for sustainable agriculture through deep learning approach with hybrid data augmentation. Curr. Plant Biol. 41, 100437 (2025). https://doi.org/10.1016/j.cpb.2025.100437 [Google Scholar]
  4. R. Mao, Y. Zhang, Z. Wang, X. Hao, T. Zhu, S. Gao, X. Hu, DAE-Mask: A novel deep-learningbased automatic detection model for in-field wheat diseases. Precis. Agric. 25, 785–810 (2024). https://doi.org/10.1007/s11119-023-10093-x [Google Scholar]
  5. P. Indumathi, R. Kumuthaveni, Coati optimized transfer learning with vision transformer model for improving deep learner based plant diseases detection. Int. J. Intell. Eng. Syst. 17, 277–288 (2024). https://doi.org/10.22266/ijies2024.0831.21 [Google Scholar]
  6. A. Singla, A. Nehra, K. Joshi, A. Kumar, N. Tuteja, R.K. Varshney, S.S. Gill, R. Gill, Exploration of machine learning approaches for automated crop disease detection. Curr. Plant Biol. 40, 100382 (2024). https://doi.org/10.1016/j.cpb.2024.100382 [Google Scholar]
  7. H. Sun, R. Fu, X. Wang, Y. Wu, M.A. Al-Absi, Z. Cheng, Q. Chen, Y. Sun, Efficient deep learningbased tomato leaf disease detection through global and local feature fusion. BMC Plant Biol. 25, 311 (2025). https://doi.org/10.1186/s12870-025-06247-w [Google Scholar]
  8. S. Hemalatha, J.J.B. Jayachandran, A multitask learning-based vision transformer for plant disease localization and classification. Int. J. Comput. Intell. Syst. 17, 188 (2024). https://doi.org/10.1007/s44196-024-00597-3 [Google Scholar]
  9. S.U. Khan, A. Alsuhaibani, A. Alabduljabbar, F. Almarshad, Y.N. Altherwy, T. Akram, A review on automated plant disease detection: Motivation, limitations, challenges, and recent advancements for future research. J. King Saud Univ. Comput. Inf. Sci. 37, 34 (2025). https://doi.org/10.1007/s44443-025-00040-3 [Google Scholar]
  10. S. Kalaivani, C. Tharini, T.S. Viswa, K.F. Sara, S.T. Abinaya, ResNet-based classification for leaf disease detection. J. Inst. Eng. India Ser. B 106, 1–14 (2025). https://doi.org/10.1007/s40031-024-01062-7 [Google Scholar]
  11. P. Yadav, P. Singh, Disease detection techniques in plants: Transition from manual to automation, In Proceedings of International Workshop on New Approaches for Multidimensional Signal Processing, Springer, Singapore, December 03 (2022), 93–109 [Google Scholar]
  12. S. Duhan, P. Gulia, N.S. Gill, E. Narwal, RTR_Lite_MobileNetV2: A lightweight and efficient model for plant disease detection and classification. Curr. Plant Biol. 42, 100459 (2025). https://doi.org/10.1016/j.cpb.2025.100459 [Google Scholar]
  13. M. Rezaei, D. Diepeveen, H. Laga, M.G. Jones, F. Sohel, Plant disease recognition in a low data scenario using few-shot learning. Comput. Electron. Agric. 219, 108812 (2024). https://doi.org/10.1016/j.compag.2024.108812 [Google Scholar]
  14. E. Moupojou, F. Retraint, H. Tapamo, M. Nkenlifack, C. Kacfah, A. Tagne, Segment anything model & fully convolutional data description for plant multi-disease detection on field images. IEEE Access 12, 102592–102605 (2024). https://doi.org/10.1109/ACCESS.2024.3433495 [Google Scholar]
  15. X. Jiang, J. Wang, K. Xie, C. Cui, A. Du, X. Shi, W. Yang, R. Zhai, PlantCaFo: An efficient few-shot plant disease recognition method based on foundation models. Plant Phenomics 7, 100024 (2025). https://doi.org/10.1016/j.plaphe.2025.100024 [Google Scholar]
  16. Z. Salman, A. Muhammad, D. Han, Plant disease classification in the wild using vision transformers and mixture of experts. Front. Plant Sci. 16, 1522985 (2025). https://doi.org/10.3389/fpls.2025.1522985 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.