Error
  • The authentification system partialy failed, sorry for the inconvenience. Please try again later.
Open Access
Issue
ITM Web Conf.
Volume 79, 2025
International Conference on Knowledge Engineering and Information Systems (KEIS-2025)
Article Number 01038
Number of page(s) 8
DOI https://doi.org/10.1051/itmconf/20257901038
Published online 08 October 2025
  1. R. Klar, I. Rubensson, Spatio-temporal investigation of public transport demand using smart card data. Appl. Spatial Anal. Policy 17, 241268 (2024). https://doi.org/10.1007/s12061-023-09542-x [Google Scholar]
  2. Z. Zarabi, E.O.D. Waygood, L. Olsson, M. Friman, A.S. Gousse-Lessard, Enhancing public transport use: The influence of soft pull interventions. Transp. Policy 153, 190–203 (2024). https://doi.org/10.1016/j.tranpol.2024.05.005 [Google Scholar]
  3. Z. Wang, K. An, G. Correia, W. Ma, Real-time scheduling and routing of shared autonomous vehicles considering platooning in intermittent segregated lanes and priority at intersections in urban corridors. Transp. Res. E Logist. Transp. Rev. 186, 103546 (2024). https://doi.org/10.1016/j.tre.2024.103546 [Google Scholar]
  4. V. Kourepinis, C. Iliopoulou, I. Tassopoulos, G. Beligiannis, An artificial fish swarm optimization algorithm for the urban transit routing problem. Appl. Soft Comput. 155, 111446 (2024). https://doi.org/10.1016/j.asoc.2024.111446 [Google Scholar]
  5. S. Melo, R. Gomes, R. Abbasi, A. Arantes, Demand-responsive transport for urban mobility: Integrating mobile data analytics to enhance public transportation systems. Sustainability 16, 4367 (2024). https://doi.org/10.3390/su16114367 [Google Scholar]
  6. L. Mertens, B. Amberg, N. Kliewer, Integrated bus timetabling, vehicle scheduling, and crew scheduling with a mutation-based evolutionary scheme. Transp. Res. Procedia 78, 7–15 (2024). https://doi.org/10.1016/j.trpro.2024.02.002 [Google Scholar]
  7. K.M. Almatar, Smart transportation planning and its challenges in the Kingdom of Saudi Arabia. Sustain. Futures 8, 100238 (2024). https://doi.org/10.1016/j.sftr.2024.100238 [Google Scholar]
  8. V. Lukic Vujadinovic, A. Damnjanovic, A. Cakic, D. R. Petkovic, M. Prelevic, V. Pantovic, M. Stojanovic, D. Vidojevic, D. Vranjes, I. Bodolo, AI-driven approach for enhancing sustainability in urban public transportation. Sustainability 16, 7763 (2024). https://doi.org/10.3390/su16177763 [Google Scholar]
  9. A. Shabbir, A.N. Cheema, I. Ullah, I.M. Almanjahie, F. Alshahrani, Smart city traffic management: Acoustic-based vehicle detection using stacking-based ensemble deep learning approach. IEEE Access 12, 35947–35956 (2024). https://doi.org/10.1109/ACCESS.2024.3370867 [Google Scholar]
  10. P. Li, Z. Xiao, H. Gao, X. Wang, Y. Wang, Reinforcement learning based edge-end collaboration for multi-task scheduling in 6G enabled intelligent autonomous transport systems. IEEE Trans. Intell. Transp. Syst. 1–14 (2025). https://doi.org/10.1109/TITS.2024.3525356 [Google Scholar]
  11. Â.F. Brochado, E.M. Rocha, D. Costa, A modular IoT-based architecture for logistics service performance assessment and real-time scheduling towards a synchromodal transport system. Sustainability 16, 742 (2024). https://doi.org/10.3390/su16020742 [Google Scholar]
  12. J. Wust, J. Bekker, M.J. Booysen, Investigating scheduling of minibus taxis in South Africa’s eventual electric paratransit. J. Transp. Geogr. 123, 104093 (2025). https://doi.org/10.1016/j.jtrangeo.2024.104093 [Google Scholar]
  13. M. Xiao, L. Chen, H. Feng, Z. Peng, Q. Long, Sustainable and robust route planning scheme for smart city public transport based on multi-objective optimization: Digital twin model. Sustain. Energy Technol. Assess. 65, 103787 (2024). https://doi.org/10.1016/j.seta.2024.103787 [Google Scholar]
  14. M. Elassy, M. Al-Hattab, M. Takruri, S. Badawi, Intelligent transportation systems for sustainable smart cities. Transp. Eng. 16, 100252 (2024). https://doi.org/10.1016/j.treng.2024.100252 [Google Scholar]
  15. S.K. Jha, C. Gandikoti, S.K. Jha, B.M. Jha, Electric vehicle charge scheduling approach based on smart decision hunting optimization. Int. J. Interact. Des. Manuf. 18, 331–349 (2024). https://doi.org/10.1007/s12008-023-01461-y [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.