Open Access
| Issue |
ITM Web Conf.
Volume 79, 2025
International Conference on Knowledge Engineering and Information Systems (KEIS-2025)
|
|
|---|---|---|
| Article Number | 01039 | |
| Number of page(s) | 7 | |
| DOI | https://doi.org/10.1051/itmconf/20257901039 | |
| Published online | 08 October 2025 | |
- W. Deng, P. Zhu, H. Chen, T. Yuan, J. Wu, Knowledge-aware sequence modelling with deep learning for online course recommendation. Inf. Process. Manag. 60, 103377 (2023). https://doi.org/10.1016/j.ipm.2023.103377 [Google Scholar]
- S. Bansal, K. Gowda, N. Kumar, Multilingual personalized hashtag recommendation for low resource Indic languages using graph-based deep neural network. Expert Syst. Appl. 236, 121188 (2024). https://doi.org/10.1016/j.eswa.2023.121188 [Google Scholar]
- D. Cai, S. Qian, Q. Fang, J. Hu, W. Ding, C. Xu, Heterogeneous graph contrastive learning network for personalized micro-video recommendation. IEEE Trans. Multimed. 25, 2761–2773 (2022). https://doi.org/10.1109/TMM.2022.3151026 [Google Scholar]
- Z. Shokrzadeh, M.R. Feizi-Derakhshi, M.A. Balafar, J.B. Mohasefi, Knowledge graph-based recommendation system enhanced by neural collaborative filtering and knowledge graph embedding. Ain Shams Eng. J. 15, 102263 (2024). https://doi.org/10.1016/j.asej.2023.102263 [Google Scholar]
- J. Zhou, G. Jiang, W. Du, C. Han, Profiling temporal learning interests with time-aware transformers and knowledge graph for online course recommendation. Electron. Commer. Res. 23, 2357–2377 (2023). https://doi.org/10.1007/s10660-022-09541-z [Google Scholar]
- D.H. Tran, Q.Z. Sheng, W.E. Zhang, N.H. Tran, N.L. Khoa, CupMar: A deep learning model for personalized news recommendation based on contextual user-profile and multi-aspect article representation. World Wide Web 26, 713–732 (2023). https://doi.org/10.1007/s11280-022-01059-6 [Google Scholar]
- R. Alabduljabbar, H. Almazrou, A. Aldawod, Context-aware news recommendation system: Incorporating contextual information and collaborative filtering techniques. Int. J. Comput. Intell. Syst. 16, 137 (2023). https://doi.org/10.1007/s44196-023-00315-5 [Google Scholar]
- M. Wang, Y. Hu, S. Wu, W. Li, Q. Bai, Z. Yuan, C. Jiang, Nudging toward responsible recommendations: A graph-based approach to mitigate belief filter bubbles. IEEE Trans. Artif. Intell. 6, 378–392 (2024). https://doi.org/10.1109/TAI.2024.3373392 [Google Scholar]
- T. Anwar, V. Uma, CD-SPM: Cross-domain book recommendation using sequential pattern mining and rule mining. J. King Saud Univ. Comput. Inf. Sci. 34, 793–800 (2022). https://doi.org/10.1016/j.jksuci.2019.01.012 [Google Scholar]
- S. Wang, X. Xu, X. Zhang, Y. Wang, W. Song, Veracity-aware and event-driven personalized news recommendation for fake news mitigation, In Proceedings of the ACM web conference 2022, The ACM Web Conference, Virtual Event, Lyon, France, April 25 (2022), 3673–3684 [Google Scholar]
- W. Lu, R. Wang, S. Wang, X. Peng, H. Wu, Q. Zhang, Aspect-driven user preference and news representation learning for news recommendation. IEEE Trans. Intell. Transp. Syst. 23, 25297–25307 (2022). https://doi.org/10.1109/TITS.2022.3182568 [Google Scholar]
- X. Chen, C. Huang, L. Yao, X. Wang, W. Zhang, Knowledge-guided deep reinforcement learning for interactive recommendation. in 2020 International Joint Conference on Neural Networks (IJCNN), IEEE, Glasgow, UK, September 20 (2020), 1–8 [Google Scholar]
- D. Wu, M. Tang, S. Zhang, A. You, W. Gao, KPRLN: deep knowledge preference-aware reinforcement learning network for recommendation. Complex Intell. Syst. 9, 66456659 (2023). https://doi.org/10.1007/s40747-023-01083-7 [Google Scholar]
- M. Zhang, Y. Li, S. Li, Y. Wang, J. Yan, Knowledge graph-enhanced hierarchical reinforcement learning for interactive and explainable recommendation. IEEE Access 12, 137345–137359 (2024). https://doi.org/10.1109/ACCESS.2024.3464733 [Google Scholar]
- U. Aslam, F. Dine, Unifying NLP and Knowledge Graphs: AI-Powered Techniques for Intelligent Information Extraction. (2025) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.

