Open Access
| Issue |
ITM Web Conf.
Volume 79, 2025
International Conference on Knowledge Engineering and Information Systems (KEIS-2025)
|
|
|---|---|---|
| Article Number | 01052 | |
| Number of page(s) | 7 | |
| DOI | https://doi.org/10.1051/itmconf/20257901052 | |
| Published online | 08 October 2025 | |
- S.B. Abdullahi, Z.A. Bature, P. Chophuk, A. Muhammad, Sequence-wise multimodal biometric fingerprint and finger-vein recognition network (STMFPFV-Net). Intell. Syst. Appl. 19, 200256 (2023). https://doi.org/10.1016/j.iswa.2023.200256 [Google Scholar]
- F.W. Ipeayeda, M.O. Oyediran, S.A. Ajagbe, J.O. Jooda, M.O. Adigun, Optimized gravitational search algorithm for feature fusion in a multimodal biometric system. Results Eng. 20, 101572 (2023). https://doi.org/10.1016/j.rineng.2023.101572 [Google Scholar]
- S.P. Singh, S. Tiwari, A dual multimodal biometric authentication system based on WOA-ANN and SSA-DBN techniques. Sci. 5, 10 (2023). https://doi.org/10.3390/sci5010010 [Google Scholar]
- M. Hammad, M.A. Wani, K.A. Shakil, H. Shaiba, A.A. Abd El-Latif, Deep cancelable multibiometric finger vein and fingerprint authentication with nonnegative matrix factorization. IEEE Access. 12, 120638–120660 (2024). https://doi.org/10.1109/ACCESS.2024.3450372 [Google Scholar]
- S. Artabaz, L. Sliman, Feature fusion and selection using handcrafted vs. deep learning methods for multimodal hand biometric recognition. Sci. Rep. 15, 29237 (2025). https://doi.org/10.1038/s41598-025-10075-1 [Google Scholar]
- S. Salturk, N. Kahraman, Deep learning-powered multimodal biometric authentication: integrating dynamic signatures and facial data for enhanced online security. Neural Comput. Appl. 36, 1131111322 (2024). https://doi.org/10.1007/s00521-024-09690-2 [Google Scholar]
- V. Vekariya, M. Joshi, S. Dikshit, Multi-biometric fusion for enhanced human authentication in information security. Meas.: Sensors 31, 100973 (2024). https://doi.org/10.1016/j.measen.2023.100973 [Google Scholar]
- S. Vatchala, C. Yogesh, Y. Govindarajan, M.K. Raja, V.P.A. Ganesan, A.A. Vinod, D. Ramesh, Multi-modal biometric authentication: Leveraging shared layer architectures for enhanced security. IEEE Access. 13, 28029–28041 (2025). https://doi.org/10.1109/ACCESS.2025.3534223 [Google Scholar]
- T.S. Sasikala, Multimodal secure biometrics using attention efficient-net hash compression framework. Digit. Signal Process. 160, 105018 (2025). https://doi.org/10.1016/j.dsp.2025.105018 [Google Scholar]
- T. L. Oteko, K.A. Ogudo, Dual Chaotic Diffusion Framework for Multimodal Biometric Security Using Qi Hyperchaotic System. Symmetry 17, 1231 (2025). https://doi.org/10.3390/sym17081231 [Google Scholar]
- R. Garg, P. Pathak, M.P. Singh, A multimodal biometric recognition system based on fingerprints, iris and ECG via Swin Transformer and CNN model. Syst. Soft Comput. 7, 200369 (2025). https://doi.org/10.1016/j.sasc.2025.200369 [Google Scholar]
- M.R. Prabhu, R. Sivaraman, N. Nagabhooshanam, R.S. Kumar, S.S. Salunkhe, Empowering artificial intelligence-based multi-biometric image sensor for human identification. Meas.: Sensors 33, 101082 (2024). https://doi.org/10.1016/j.measen.2024.101082 [Google Scholar]
- F. Ahamed, F. Farid, B. Suleiman, Z. Jan, L.A. Wahsheh, S. Shahrestani, An intelligent multimodal biometric authentication model for personalised healthcare services. Future Internet 14, 222 (2022). https://doi.org/10.3390/fi14080222 [Google Scholar]
- J. Vinayagam, G. Dilip, A two-step verificationbased multimodal-biometric authentication system using KCP-DCNN and QR code generation. J. Ambient Intell. Humaniz. Comput. 15, 3973–3996 (2024). https://doi.org/10.1007/s12652-024-04872-1 [Google Scholar]
- R. Rani, R. Dhir, K. Sonkar, Random projectionbased cancelable iris biometrics for human identification using deep learning. Arab. J. Sci. Eng. 49, 3815–3828 (2024). https://doi.org/10.1007/s13369-023-08190-0 [Google Scholar]
- SOCOfing fingerprint dataset link: https://www.kaggle.com/datasets/ruizgara/socofing (Accessed on August 18 2025) [Google Scholar]
- IITD Iris dataset link: https://www.researchgate.net/figure/Sample-images-from-the-IITD-Irisdatabase_fig2_357404588 (Accessed on August 18 2025) [Google Scholar]
- HEARTPRINT ECG dataset link: https://www.kaggle.com/datasets/shayanfazeli/heartbeat (Accessed on August 18 2025) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.

