Error
  • The authentification system partialy failed, sorry for the inconvenience. Please try again later.
Open Access
Issue
ITM Web Conf.
Volume 79, 2025
International Conference on Knowledge Engineering and Information Systems (KEIS-2025)
Article Number 01053
Number of page(s) 7
DOI https://doi.org/10.1051/itmconf/20257901053
Published online 08 October 2025
  1. R. Behrens, A.K. Kupfer, T. Hennig-Thurau, There is business like show business! What marketing scholars and managers can learn from 40 years of entertainment science research. J. Acad. Mark. Sci. 53, 760–780 (2025). https://doi.org/10.1007/s11747-024-01057-2 [Google Scholar]
  2. R. Garapati, M. Chakraborty, Recommender systems in the digital age: a comprehensive review of methods, challenges, and applications. Knowl. Inf. Syst., 1–45 (2025). https://doi.org/10.1007/s10115-025-02453-y [Google Scholar]
  3. M. Pasupuleti, S.M. Satapathy, Unleashing the power of untuned large language models in recommender systems: a thorough investigation of current approaches, challenges, and future research directions. Knowl. Inf. Syst, 1–77 (2025). https://doi.org/10.1007/s10115-025-02539-7 [Google Scholar]
  4. A. Smajić, R. Karlović, M. Bobanović Dasko, I. Lorencin, Large language models for structured and semi-structured data, recommender systems and knowledge base engineering: a survey of recent techniques and architectures. Electron. 14, 3153 (2025). https://doi.org/10.3390/electronics14153153 [Google Scholar]
  5. Q. Bsoul, F. Zawaideh, B.S. Alqadi, L.A. Almusfar, O.I. Khalaf, A.S. Alattas, M. Alali, D.S. AbdElminaam, From user preferences to accurate predictions: enhancing movie recommendation systems with neural collaborative filtering and sentiment analysis. SN Comput. Sci. 6, 257 (2025). https://doi.org/10.1007/s42979-025-03742-7 [Google Scholar]
  6. K. Jain, R. Jindal, Optimization-based noise filtering among user-centric tweets to improve predictions in recommendation system. J. Supercomput. 81, 1005 (2025). https://doi.org/10.1007/s11227-025-07457-7 [Google Scholar]
  7. C. Jin, M. Lin, F. Wu, X. Wu, Y. Zhou, J. Wang, TVMTrailer: a text-video-music AIGC framework for film trailer generation. IEEE Trans. Syst. Man Cybern. Syst. 55, 6000–6010 (2025). https://doi.org/10.1109/TSMC.2025.3576988 [Google Scholar]
  8. T. Sachdeva, L.M. Goyal, M. Mittal, Mapping the landscape of personalization: a comprehensive review of prediction and trends in recommendation systems. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 15, e70006 (2025). https://doi.org/10.1002/widm.70006 [Google Scholar]
  9. K. Sinha, D.S. Jana, Chapter 9 Multimedia database: data structures and algorithms for efficient management, 153–174 (2025). [Google Scholar]
  10. S. Patil, R. Patil, S. Goudar, S. Sangani, R.H. Goudar, Review on music emotion analysis using machine learning: technologies, methods, datasets, and challenges. Discover Appl. Sci. 7, 692 (2025). https://doi.org/10.1007/s42452-025-07178-9 [Google Scholar]
  11. A.D. Lokmanoglu, D. Walter, Topic modeling of video and image data: a visual semantic unsupervised approach. Commun. Methods Meas., 232–279 (2025). https://doi.org/10.1080/19312458.2025.2549707 [Google Scholar]
  12. L. Zhao, J. Yu, A.A. Laghari, K. Fang, T.R. Gadekallu, Feature jointly-based knowledge enhancement model for multimodal sentiment analysis. IEEE Trans. Comput. Soc. Syst. 1–13 (2025). https://doi.org/10.1109/TCSS.2025.3582541 [Google Scholar]
  13. X. Liu, Z. Yang, J. Cheng, Music recommendation algorithms based on knowledge graph and multitask feature learning. Sci. Rep. 14, 2055 (2024). https://doi.org/10.1038/s41598-024-52463-z [Google Scholar]
  14. N. Bertram, J. Dunkel, R. Hermoso, I am all EARS: using open data and knowledge graph embeddings for music recommendations. Expert Syst. Appl. 229, 120347 (2023). https://doi.org/10.1016/j.eswa.2023.120347 [Google Scholar]
  15. A. Ivanovski, M. Jovanovik, R. Stojanov, D. Trajanov, Knowledge graph based recommender for automatic playlist continuation. Information 14, 510 (2023). https://doi.org/10.3390/info14090510 [Google Scholar]
  16. M. Bevec, M. Tkalčič, M. Pesek, Hybrid music recommendation with graph neural networks. User Model. User-Adap. Interact. 34, 1891–1928 (2024). https://doi.org/10.1007/s11257-024-09410-4 [Google Scholar]
  17. K. Sakurai, R. Togo, T. Ogawa, M. Haseyama, Controllable music playlist generation based on knowledge graph and reinforcement learning. Sens. 22, 3722 (2022). https://doi.org/10.3390/s22103722 [Google Scholar]
  18. Last.FM_ 1 K dataset: https://www.kaggle.com/datasets/harshal19t/lastfm-dataset (Accessed on July 2025) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.