Error
  • The authentification system partialy failed, sorry for the inconvenience. Please try again later.
Open Access
Issue
ITM Web Conf.
Volume 79, 2025
International Conference on Knowledge Engineering and Information Systems (KEIS-2025)
Article Number 01054
Number of page(s) 7
DOI https://doi.org/10.1051/itmconf/20257901054
Published online 08 October 2025
  1. J. Lu, S.C. Chuah, D.M. Xia, J. Gary, The development of the modern logistics industry and its role in promoting regional economic growth in China’s underdeveloped northwest, driven by the digital economy. Economies 13, 261 (2025). https://doi.org/10.3390/economies13090261 [Google Scholar]
  2. L. Zhao, L. Zou, Z. Wang, T. Song, P. Schonfeld, F. Chen, R. Li, P. Li, Multi-task graph-based model for metro flow prediction under dynamic urban conditions. Comput.-Aided Civ. Infrastruct. Eng. 40, 3239–3258 (2025). https://doi.org/10.1111/mice.13505 [Google Scholar]
  3. China Council for International Cooperation on Environment and Development (CCICED) Secretariat, Promoting Digitalization and Green Technologies for Sustainable Development, in Green Empowerment and High Quality Development: CCICED Annual Policy Report 2023 (Springer Nature, Singapore, 2025) [Google Scholar]
  4. M. Liu, Z. Li, Knowledge enhanced and incongruity perceiving network for multimodal sarcasm detection. Cogn. Comput. 17, 140 (2025). https://doi.org/10.1007/s12559-025-10499-x [Google Scholar]
  5. F. Wang, Q. Fan, T. Wang, X. Zhang, X. Li, H. Yin, IKENGA: infeasibility knowledge-enhanced genetic algorithm for virtual network embedding. IEEE Trans. Green Commun. Netw. 1–1 (2025). https://doi.org/10.1109/TGCN.2025.3600426 [Google Scholar]
  6. P. Mithoo, M. Kumar, SDHO-KGNN: an effective knowledge-enhanced optimal graph neural network approach for fraudulent call detection. Trans. Emerg. Telecommun. Technol. 36, e70101 (2025). https://doi.org/10.1002/ett.70101 [Google Scholar]
  7. X. Li, H. He, Y. Yang, Z. Fan, Automatic search model of railway shunting route based on improved artificial neural network algorithm. Discov. Artif. Intell. 5, 231 (2025). https://doi.org/10.1007/s44163-025-00484-6 [Google Scholar]
  8. H. Liu, S. Yin, X. Hu, M. Deng, X. Yang, G. Xu, A spatiotemporal–semantic coupling intelligent Q&A method for land use approval based on knowledge graphs and intelligent agents. Appl. Sci. 15, 9012 (2025). https://doi.org/10.3390/app15169012 [Google Scholar]
  9. H. Zhao, M. Gu, S. Qiu, A. Zhao, W. Deng, Dynamic path planning for space-time optimization cooperative tasks of multiple unmanned aerial vehicles in uncertain environment. IEEE Trans. Consum. Electron. 1–1 (2025). https://doi.org/10.1109/TCE.2025.3593383 [Google Scholar]
  10. Q. Nie, Y. Shen, Y. Ma, S. Zhang, L. Zong, Z. Zheng, Y. Zhangwa, Y. Chen, Probing augmented intelligent human–robot collaborative assembly methods toward industry 5.0. Electron. 14, 3125 (2025). https://doi.org/10.3390/electronics14153125 [Google Scholar]
  11. V. Sahadevan, R. Joshi, K. Borg, V. Singh, A.R. Singh, B. Muhammed, S.B. Beemaraj, A. Joshi, Knowledge augmented generalizer specializer: a framework for early stage design exploration. Adv. Eng. Inform. 65, 103141 (2025). https://doi.org/10.1016/j.aei.2025.103141 [Google Scholar]
  12. N. Cheng, X. He, User preference information recommendation based on DCGNN and GNNPK algorithms. Syst. Soft Comput. 7, 200364 (2025). https://doi.org/10.1016/j.sasc.2025.200364 [Google Scholar]
  13. H. Wen, Y. Lin, X. Mao, F. Wu, Y. Zhao, H. Wang, J. Zheng, L. Wu, H. Hu, H. Wan, Graph2route: A dynamic spatial-temporal graph neural network for pick-up and delivery route prediction, In Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and data mining, Association for Computing Machinery, Washington DC, USA, August 14 (2022), 41434152 [Google Scholar]
  14. Y. Zhou, Y. Liu, N. Ning, L. Wang, Z. Zhang, X. Gao, N. Lu, Integrating knowledge representation into traffic prediction: a spatial–temporal graph neural network with adaptive fusion features. Complex Intell. Syst. 10, 2883–2900 (2024). https://doi.org/10.1007/s40747-023-01237-3 [Google Scholar]
  15. J. Yi, H. Yan, H. Wang, J. Yuan, Y. Li, Deepsta: A spatial-temporal attention network for logistics delivery timely rate prediction in anomaly conditions, In Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, Association for Computing Machinery, Birmingham, United Kingdom, October 21 (2023), 4916–4922 [Google Scholar]
  16. X. Wu, Z. Zhang, W. Wan, Travel route recommendation with a trajectory learning model. Complex Intell. Syst. 11, 12 (2025). https://doi.org/10.1007/s40747-024-01358-8 [Google Scholar]
  17. B. Mo, Q. Wang, X. Guo, M. Winkenbach, J. Zhao, Predicting drivers’ route trajectories in last-mile delivery using a pair-wise attention-based pointer neural network. Transp. Res. Part E Logist. Transp. Rev. 175, 103168 (2023). https://doi.org/10.1016/j.tre.2023.103168 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.