Open Access
| Issue |
ITM Web Conf.
Volume 79, 2025
International Conference on Knowledge Engineering and Information Systems (KEIS-2025)
|
|
|---|---|---|
| Article Number | 01055 | |
| Number of page(s) | 7 | |
| DOI | https://doi.org/10.1051/itmconf/20257901055 | |
| Published online | 08 October 2025 | |
- R.B. Asha, K.R.S. Kumar, Credit card fraud detection using artificial neural network, Global Transitions Proc. 2, 35–41 (2021). https://doi.org/10.1016/j.gltp.2021.01.006 [Google Scholar]
- A. Papasavva, S. Lundrigan, E. Lowther, S. Johnson, E. Mariconti, A. Markovska, N. Tuptuk, Applications of AI-based models for online fraud detection and analysis, Crime Sci. 14, 7 (2025). https://doi.org/10.1186/s40163-025-00248-8 [Google Scholar]
- A. Gheysarbeigi, M. Rakhshaninejad, M. Fathian, F. Barzinpour, An ensemble-based auto insurance fraud detection using BQANA hyperparameter tuning, IEEE Access 13, 42997–43012 (2025). https://doi.org/10.1109/ACCESS.2025.3548529 [Google Scholar]
- K.P. Joshi, L. Elluri, A. Nagar, An integrated knowledge graph to automate cloud data compliance, IEEE Access 8, 148541–148555 (2020). https://doi.org/10.1109/ACCESS.2020.3008964 [Google Scholar]
- J. Qian, G. Tong, Metapath-guided graph neural networks for financial fraud detection, Comput. Electr. Eng. 126, 110428 (2025). https://doi.org/10.1016/j.compeleceng.2024.110428 [Google Scholar]
- A. Badjie, G.M. Ntuala, Q. Xia, J. Gao, H. Xia, MGGPT: A multi-graph GPT-enhanced framework for dynamic fraud detection in cryptocurrency networks, Comput. Netw. 270, 111508 (2025). https://doi.org/10.1016/j.comnet.2025.111508 [Google Scholar]
- H. Su, I.M. Jiang, D. Liu, Detecting financial fraud risk using machine learning: Evidence based on different categories and matching samples, Finance Res. Lett. 85, 107858 (2025). https://doi.org/10.1016/j.frl.2025.107858 [Google Scholar]
- J. Li, Corporate governance, fraud learning cycles, and financial fraud detection: Evidence from Chinese listed firms, Res. Int. Bus. Finance 76, 102832 (2025). https://doi.org/10.1016/j.ribaf.2025.102832 [Google Scholar]
- O.I. Odufisan, O.V. Abhulimen, E.O. Ogunti, Harnessing artificial intelligence and machine learning for fraud detection and prevention in Nigeria, J. Econ. Criminol. 7, 100127 (2025). https://doi.org/10.1016/j.joec.2025.100127 [Google Scholar]
- V.V.K. Reddy, R.V.K. Reddy, M.S.K. Munaga, B. Karnam, S.K. Maddila, C.S. Kolli, Deep learningbased credit card fraud detection in federated learning, Expert Syst. Appl. 255, 124493 (2024). https://doi.org/10.1016/j.eswa.2024.124493 [Google Scholar]
- Y. Tang, Z. Liu, A distributed knowledge distillation framework for financial fraud detection based on transformer, IEEE Access 12, 6289962911 (2024). https://doi.org/10.1109/ACCESS.2024.3387841 [Google Scholar]
- M. Akouhar, M. Ouhssini, M. El Fatini, A. Abarda, E. Agherrabi, Dynamic oversampling-driven Kolmogorov–Arnold networks for credit card fraud detection: An ensemble approach to robust financial security, Egypt. Inform. J. 31, 100712 (2025). https://doi.org/10.1016/j.eij.2025.100712 [Google Scholar]
- S. Ghosh, A novel framework for financial cybersecurity and fraud detection using XAI-RNN- SGRU, IEEE Access 13, 88134–88155 (2025). https://doi.org/10.1109/ACCESS.2025.3570216 [Google Scholar]
- Y. Tang, Y. Liang, Credit card fraud detection based on federated graph learning, Expert Syst. Appl. 256, 124979 (2024). https://doi.org/10.1016/j.eswa.2024.124979 [Google Scholar]
- R.K. Gupta, A. Hassan, S.K. Majhi, N. Parveen, A.T. Zamani, R. Anitha, B. Ojha, A.K. Singh, D. Muduli, Enhanced framework for credit card fraud detection using robust feature selection and a stacking ensemble model approach, Results Eng. 26, 105084 (2025). https://doi.org/10.1016/j.rineng.2025.105084 [Google Scholar]
- The IEEE-CIS fraud detection dataset link: https://www.kaggle.com/c/ieee-fraud-detection/ [Google Scholar]
- The Credit card fraud detection dataset link: https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.

