Error
  • The authentification system partialy failed, sorry for the inconvenience. Please try again later.
Open Access
Issue
ITM Web Conf.
Volume 79, 2025
International Conference on Knowledge Engineering and Information Systems (KEIS-2025)
Article Number 01056
Number of page(s) 8
DOI https://doi.org/10.1051/itmconf/20257901056
Published online 08 October 2025
  1. J. Chang, W. Du, B. Zhang, S. Guo, Y. Yin, Z. Wang, T. Xu, Z. Feng, Based on the improved EDCSTFN model, MODIS, Landsat 8 and Sentinel-2 data were fused to obtain 10 m dense time series images. IEEE Access 13, 79189–79202 (2025). https://doi.org/10.1109/ACCESS.2025.3564968 [Google Scholar]
  2. I. Ituen, B. Hu, A multisource data approach for change and disturbance mapping of Ontario's Clay Belt towards more accurate carbon and emissions estimation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 18, 38–60 (2024). https://doi.org/10.1109/JSTARS.2024.3491804 [Google Scholar]
  3. W. Zhao, R. Lyu, J. Zhang, J. Pang, J. Zhang, A fast hybrid approach for continuous land cover change monitoring and semantic segmentation using satellite time series. Int. J. Appl. Earth Obs. Geoinf. 134, 104222 (2024). https://doi.org/10.1016/j.jag.2024.104222 [Google Scholar]
  4. X. Zhong, Y. Du, X. Wang, X. Li, W. Zhao, Y. Zhang, P.M. Atkinson, Monitoring annual forest cover fraction change during 2000–2020 in China’s Han River Basin using time-series MODIS NDVI, VCF and spatio-temporal regression. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 17, 1209212111 (2024). https://doi.org/10.1109/JSTARS.2024.3417302 [Google Scholar]
  5. A. Atesoglu, H.B. Ozel, T. Varol, M. Cetin, B.U. Baysal, F.S. Bulut, Monitoring land cover/use conversions in Türkiye wetlands using Collect Earth. J. Indian Soc. Remote Sens. 53, 1979–1994 (2025). https://doi.org/10.1007/s12524-024-02111-w [Google Scholar]
  6. L. Feng, S. Hussain, N.G. Pricope, S. Arshad, A. Tariq, L. Feng, M. Mubeen, R.W. Aslam, M.S. Fnais, W. Li, H. El-Askary, Seasonal dynamics in land surface temperature in response to land use land cover changes using Google Earth Engine. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 17, 17983–17997 (2024). https://doi.org/10.1109/JSTARS.2024.3466191 [Google Scholar]
  7. S.S. Wahla, J.H. Kazmi, A. Tariq, Mapping and monitoring of spatio-temporal land use and land cover changes and relationship with normalized satellite indices and driving factors. Geol. Ecol. Landscapes 9, 279–295 (2025). https://doi.org/10.1080/24749508.2023.2187567 [Google Scholar]
  8. H. Li, Q. Miao, H. Shi, X. Li, S. Zhang, F. Zhang, H. Bu, P. Wang, L. Yang, Y. Wang, H. Du, Remote sensing monitoring of irrigated area in the nongrowth season and of water consumption analysis in a large-scale irrigation district. Agric. Water Manage. 303, 109020 (2024). https://doi.org/10.1016/j.agwat.2024.109020 [Google Scholar]
  9. M. Nyamtseren, T.D. Pham, T.T.P. Vu, I. Navaandorj, K. Shoyama, Mapping vegetation changes in Mongolian grasslands (1990–2024) using Landsat data and advanced machine learning algorithm. Remote Sens. 17, 400 (2025). https://doi.org/10.3390/rs17030400 [Google Scholar]
  10. S. Yuan, Z. Mei, C. Zhu, R. Cao, S. Li, L. Yang, Y. Su, W. Li, Investigating the spatio-temporal interactive relationship between land use structure and ecosystem services in urbanizing China. Ecol. Indic. 158, 111315 (2024). https://doi.org/10.1016/j.ecolind.2023.111315 [Google Scholar]
  11. R.O. Muchelo, T.F. Bishop, S.U. Ugbaje, S.I. Akpa, Patterns of urban sprawl and agricultural land loss in sub-Saharan Africa: the cases of the Ugandan cities of Kampala and Mbarara. Land 13, 1056 (2024). https://doi.org/10.3390/land13071056 [Google Scholar]
  12. X. Wang, B. Chen, J. Dong, Y. Gao, G. Wang, H. Lai, Z. Wu, C. Yang, W. Kou, T. Yun, Early identification of immature rubber plantations using Landsat and Sentinel satellite images. Int. J. Appl. Earth Obs. Geoinf. 133, 104097 (2024). https://doi.org/10.1016/j.jag.2024.104097 [Google Scholar]
  13. H. Zhang, K. Luo, A. Samat, C. Zhu, T. Jiao, ACO- TSSCD: an optimized deep multimodal temporal semantic segmentation change detection approach for monitoring agricultural land conversion. Agronomy 14, 2909 (2024). https://doi.org/10.3390/agronomy14122909 [Google Scholar]
  14. M. Majnoun Hosseini, M.J. Valadan Zoej, A. Taheri Dehkordi, E. Ghaderpour, Cropping intensity mapping in Sentinel-2 and Landsat-8/9 remote sensing data using temporal transfer of a stacked ensemble machine learning model within Google Earth Engine. Geocarto Int. 39, 2387786 (2024). https://doi.org/10.1080/10106049.2024.2387786 [Google Scholar]
  15. C. Eisfelder, B. Boemke, U. Gessner, P. Sogno, G. Alemu, R. Hailu, C. Mesmer, J. Huth, Cropland and crop type classification with Sentinel-1 and Sentinel-2 time series using Google Earth Engine for agricultural monitoring in Ethiopia. Remote Sens. 16, 866 (2024). https://doi.org/10.3390/rs16050866 [Google Scholar]
  16. The landsat-8 dataset link: https://earth.esa.int/eogateway/missions/landsat-8 (accessed on 14/08/25) [Google Scholar]
  17. The sentinel-2 dataset link: https://dataspace.copernicus.eu/explore-data/data-collections/sentinel-data/sentinel-2 (accessed on 14/08/25) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.