Issue |
ITM Web Conf.
Volume 20, 2018
International Conference on Mathematics (ICM 2018) Recent Advances in Algebra, Numerical Analysis, Applied Analysis and Statistics
|
|
---|---|---|
Article Number | 01008 | |
Number of page(s) | 6 | |
Section | Algebra | |
DOI | https://doi.org/10.1051/itmconf/20182001008 | |
Published online | 12 October 2018 |
Relationships between quantized algebras and their semiclassical limits
Department of Mathematics, Chungnam National University, 99 Daehak-ro, Daejeon 34134, Korea
*
e-mail: sqoh@cnu.ac.kr
A Poisson ℂ-algebra R appears in classical mechanical system and its quantized algebra appearing in quantum mechanical system is a ℂ[[ħ]]-algebra Q = R[[ħ]] with star product * such that for any a,b Є R ⊆ Q, a*b = ab + B1(a,b)ħ + B2(a,b)ħ2 + … subject to {a,b}= ħ-1(a * b ‒ b * a)|ħ=0, … (**) where Bi : R ⨯ R → R are bilinear products. The given Poisson algebra R is recovered from its quantized algebra Q by R = Q/ħQ with Poisson bracket (**), which is called its semiclassical limit. But it seems that the star product in Q is complicate and that Q is difficult to understand at an algebraic point of view since it is too big. For instance, if λ is a nonzero element of ℂ then ħ - λ is a unit in Q and thus a so-called deformation of R, Q/(ħ - λ)Q, is trivial. Hence it seems that we need an appropriate 픽-subalgebra A of Q such that A contains all generators of Q, ħ є A and A is understandable at an algebraic point of view, where 픽 is a subring of C[[ħ]].
Here we discuss how to find nontrivial deformations from quantized algebras and the natural map in [6] from a class of infinite deformations onto its semiclassical limit. The results are illustrated by examples.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.