Open Access
ITM Web Conf.
Volume 7, 2016
3rd Annual International Conference on Information Technology and Applications (ITA 2016)
Article Number 02007
Number of page(s) 3
Section Session 2: Signal and Image Processing
Published online 21 November 2016
  1. H. Huang, F. Luo, J. Liu and Y. Yang. Dimensionality reduction of hyperspectral images based on sparse discriminant manifold embedding. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 106: 42–54 [CrossRef] [Google Scholar]
  2. L.O. Jimenez, D.A. Landgrebe. Supervised classification in highdimensional space: geometrical, statistical, and asymptotical properties of multivariate data. IEEE Transactions on Systems Man & Cybernetics Part C, 1998, 28(1): 39–54. [CrossRef] [Google Scholar]
  3. N. D. Le Hanh, M. S Kim, and D. H. Kim. Comparison of Singular Value Decomposition and Principal Component Analysis applied to Hyper spectral Imaging of biofilm. IEEE Photonics Conference, 2012: 6–7. [Google Scholar]
  4. T. Bandos, L. Bruzzone and G. Camps-Valls. Classification of Hyper spectral Images With Regularized Linear Discriminant Analysis. IEEE Transactions on Geoscience & Remote Sensing, 2009, 47(3): 862–873. [CrossRef] [Google Scholar]
  5. F. X. Song, K. Cheng, J.Y. Yang, et al., Maximum scatter difference, large margin linear projection and support vector machines, Acta Automat. Sin. 2004, 30 (6): 890–896. (in Chinese). [Google Scholar]
  6. W. Sun, A. Halevy, J. J. Benedetto, et al. UL_isomap based nonlinear dimensionality reduction for hyperspectral imagery classification. Isprs Journal of Photogrammetry & Remote Sensing, 2014, 89(2): 25–36. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.