Open Access
Issue |
ITM Web Conf.
Volume 11, 2017
2017 International Conference on Information Science and Technology (IST 2017)
|
|
---|---|---|
Article Number | 07003 | |
Number of page(s) | 8 | |
Section | Session VII: Control and Automation | |
DOI | https://doi.org/10.1051/itmconf/20171107003 | |
Published online | 23 May 2017 |
- C. Q. Yang, F. Wang, Y. F. Du, et al. Adaptive optimization for petascale heterogeneous CPU/GPU computing. The 2010 IEEE Int’l Conf. on Cluster Computing. (2010) [Google Scholar]
- L. Chen, O. Villa, S. Krishnamoorthy, G. R. Gao. Dynamic load balancing on single- and multi-GPU systems. The 2010 IEEE Int’l Symp. on Parallel & Distributed Processing (IPDPS). (2010) [Google Scholar]
- E. Hermann, B. Raffin, F. Faure, T. Gautier, J. Allard. Multi-GPU and multi-CPU parallelization for interactive physics simulations. The 16th Int’l Euro-Par Conf. on Parallel Processing: Part II (Euro-Par 2010). Berlin, Heidelberg: Springer-Verlag. (2010) [Google Scholar]
- L. Bertini, C. B. Julius, D. Mosse. Power optimization for dynamic configuration in heterogeneous web server clusters. Journal of Systems and Software, 83(4): 585–598. (2010) [CrossRef] [Google Scholar]
- H. F. Wang, Y. P. Cao. GPU Power Consumption Optimization Control Model of GPU Clusters. Acta Electronica Sinica, 43(10): 1904–1910. (2015) [Google Scholar]
- H. P. Huo, X. M. Hu, C. C. Sheng, B. F. Wu. An energy efficient task scheduling scheme for node-layer heterogeneous GPU clusters. Computer Applications and Software, 30(3): 283–286. (2013) [Google Scholar]
- H. Liu, J. G. Wang, Z. Z. Ge, et al. Self-learning Load Balancing Scheduling Algorithm for GPU Heterogeneous Cluster. Journal of Xi’an Shiyou University, 30(3): 105–111. (2015) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.