Open Access
Issue |
ITM Web Conf.
Volume 12, 2017
The 4th Annual International Conference on Information Technology and Applications (ITA 2017)
|
|
---|---|---|
Article Number | 01022 | |
Number of page(s) | 6 | |
Section | Session 1: Robotics | |
DOI | https://doi.org/10.1051/itmconf/20171201022 | |
Published online | 05 September 2017 |
- Guo Y, Bennamoun M, Sohel F, et al. 3D Object Recognition in Cluttered Scenes with Local Surface Features:A Survey[J]. IEEE, 2014. [Google Scholar]
- Lai K, Bo L, Ren X, et al. Detection-based object labeling in 3D scenes[C]//Robotics and Automation (ICRA), 2012 IEEE International Conference on. IEEE, 2012: 1330–1337. [Google Scholar]
- Bo L, Ren X, Fox D. Depth kernel descriptors for object recognition[C]//Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on. IEEE, 2011: 821–826. [Google Scholar]
- A. d’Aspremont, L. El Ghaoui, M. Jordan, and G. Lanckriet. A direct formulation for Sparse PCA using semidefinite programming. SIAM Rev., 2007. [Google Scholar]
- Lai K, Bo L, Fox D. Unsupervised feature learning for 3d scene labeling[C]//Robotics and Automation (ICRA), 2014 IEEE International Conference on. IEEE, 2014: 3050–3057. [EDP Sciences] [Google Scholar]
- Guo Y, Sohel F, Bennamoun M, et al. A novel local surface feature for 3D object recognition under clutter and occlusion[J]. Information Sciences, 2015, 293: 196–213. [CrossRef] [Google Scholar]
- An Y, Li Z, Shao C. Feature Extraction from 3D Point Cloud Data Based on Discrete Curves[J]. Mathematical Problems in Engineering, 2013. [Google Scholar]
- Lai K, Bo L, Ren X, et al. Sparse distance learning for object recognition combining rgb and depth information [C]//Robotics and Automation (ICRA), 2011 IEEE International Conference on. IEEE, 2011: 4007–4013. [Google Scholar]
- Othman A, El Ghoul O. A novel approach for 3D head segmentation and facial feature points extraction [C]//Electrical Engineering and Software Applications (ICEESA), 2013 International Conference on. IEEE, 2013: 1–6. [Google Scholar]
- Lai K, Bo L, Ren X, et al. A large-scale hierarchical multi-view rgb-d object dataset[C]//Robotics and Automation (ICRA), 2011 IEEE International Conference on. IEEE, 2011: 1817–1824. [EDP Sciences] [Google Scholar]
- Gomes R B, da Silva B M F, de Medeiros Rocha L K, et al. Efficient 3D object recognition using foveated point clouds[J]. Computers & Graphics, 2013, 37(5): 496–508. [CrossRef] [Google Scholar]
- Bariya P, Nishino K. Scale-Hierarchical 3D Object Recognition in Cluttered Scenes[J]. 2010, 119(5):1657–1664. [Google Scholar]
- Blum M, Springenberg J T, Wulfing J, et al. A learned feature descriptor for object recognition in rgb-d data[C]//Robotics and Automation (ICRA), 2012 IEEE International Conference on. IEEE, 2012: 1298–1303. [Google Scholar]
- Lai K, Bo L, Ren X, et al. RGB-D object recognition: Features, algorithms, and a large scale benchmark [M]//Consumer Depth Cameras for Computer Vision. Springer London, 2013: 167–192. [CrossRef] [Google Scholar]
- Silberman N, Hoiem D, Kohli P, et al. Indoor segmentation and support inference from RGBD images[M]//Computer Vision–ECCV 2012. Springer Berlin Heidelberg, 2012: 746–760. [CrossRef] [EDP Sciences] [Google Scholar]
- Filliat D, Battesti E, Bazeille S, et al. RGBD object recognition and visual texture classification for indoor semantic mapping[C]//Technologies for Practical Robot Applications (TePRA), 2012 IEEE International Conference on. IEEE, 2012: 127–132. [CrossRef] [Google Scholar]
- Naikal N, Yang A Y, Sastry S S. Informative feature selection for object recognition via sparse PCA[C]//2011 International Conference on Computer Vision. IEEE, 2011: 818–825. [Google Scholar]
- Guan P, Huang J, Anvar A, et al. Multi-view 3D object recognition from a point cloud and change detection: U.S. Patent 9,619,691[P]. 2017-4-11. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.