Open Access
ITM Web Conf.
Volume 13, 2017
2nd International Conference on Computational Mathematics and Engineering Sciences (CMES2017)
Article Number 01035
Number of page(s) 9
Published online 02 October 2017
  1. V. Ambarzumian, Uber eine Frage der Eigenwerttheorie. Z. Physik., 53, 690–695 (1929) [CrossRef] [EDP Sciences] [Google Scholar]
  2. V. Barcilon, Iterative solution of the inverse Sturm-Liouville problem. J. Mathematical Phys., 15, 287–298 (1974) [CrossRef] [Google Scholar]
  3. G. Borg, Eine Umkehrung der Sturm-Liouvillesehen Eigenwertaufgabe. Acta Math., 78, 1–96 (1946) [CrossRef] [MathSciNet] [Google Scholar]
  4. E. Coddinoton, N. Levinson, Theory of ordinary differential equations. McGraw-Hill, New York, (1955) [Google Scholar]
  5. G.M. Gasymov, B.M. Levitan, On Sturm-Liouville differential operators with discrete spectra. Amer. Math. Soc. Transl. Series 2, 68, 21–33 (1968). [Google Scholar]
  6. I. M. Gel’fand, B. M. Levitan, On the determination of a differential equation from its spectral function. Amer. Math. Soe. Transl. Series 2, 1, 253–304 (1955) [Google Scholar]
  7. O.H. Hald, Inverse eigenvalue problems for layered media. Comm. Pure Appl. Math., 30, 69–94 (1977) [CrossRef] [MathSciNet] [Google Scholar]
  8. H. Hochstadt, The inverse Sturm-Liouville problem. Comm. Pure Appl. Math., 26, 715–729 (1973. [CrossRef] [MathSciNet] [Google Scholar]
  9. F.W.J. Olver, Introdiction to Asymptotics and Spesial Functions, New-York and London, Academic Pres. (1974) [Google Scholar]
  10. C.J. Chysan, J. Henderson, Positive solutions for singular higher order nonlinear equations, Differential Equations Dynam.Systems 2, 153–160 (1994) [EDP Sciences] [MathSciNet] [Google Scholar]
  11. K. Jörgens, Spectral theory of second-order ordinary differential operators, Lectmyes delivered at Aarhus Universitet, 1962/ 63, Aarhus, (1964) [Google Scholar]
  12. M. G. Krein, Solution of the inverse Sturm-Liouville problem. Dokl. Akad. Vaulc SSSR (N.S.), 76 21–24 (1941) [Google Scholar]
  13. On the transfer function of a one-dimensional boundary problem of second order. Dokl. Akat. 1Vaulc SSSR (N.S.), 88, 405–408 (1953) [Google Scholar]
  14. N. Levinson, The inverse Sturm-Liouville problem. Mat. Tidsskr. B., 25–30 (1949) [Google Scholar]
  15. B.M. Levitan, On the determination of a Sturm-Liouville equation by two spectra. Amer. Math. Soc. Transl. Series 2, 68, 1–20 (1968) [Google Scholar]
  16. V.A. Marcenko, Concerning the theory of a differential operator of the second order. Dokl. Akad. Nauk SSSR (N.S.), 72, 457–460 (1950) [Google Scholar]
  17. C. Willis, Inverse Sturm- liouville problems with two discontinuites. Inverse problems 2, 111–130 (1986) [CrossRef] [Google Scholar]
  18. M. A Neumark, Lineare Differential Operatoren. Akademie-Verlag, Berlin, (1963) [Google Scholar]
  19. E. C. Titchmarsh, The theory of functions. Oxford University Press, London, (1939) [Google Scholar]
  20. M. Koboyashi, A uniqueness proof for discontinuous inverse Sturm- liouville problems with symmetric potentials, 767–781 (1989) [Google Scholar]
  21. V.V. Zrkov, On inverse Sturm-Liouville problems on a finite segment. Math. USSR--Izv. 1, 923–934 (1967) [CrossRef] [Google Scholar]
  22. A. Zygmund, Trigonometric series,vol.I, 2nd ed, Cambridge University Press, London, (1959) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.