Open Access
ITM Web Conf.
Volume 14, 2017
The 12th International Conference Applied Mathematical Programming and Modelling – APMOD 2016
Article Number 00005
Number of page(s) 7
Published online 08 November 2017
  1. R. Alvarez-Valdes, A. Martinez, and J.M. Tamarit. A branch & bound algorithm for cutting and packing irregularly shaped pieces. International Journal of Production Economics, 145(2):463–477, 2013. [CrossRef] [Google Scholar]
  2. Julia, A. Bennell and Jose F. Oliveira. The geometry of nesting problems: A tutorial. European Journal of Operational Research, 184(2):397–415, 2008. [Google Scholar]
  3. Luiz Henrique Cherri, Leandro Resende Mundim, Marina Andretta, Franklina M. B. Toledo, José F. Oliveira, and Maria Antonia Carravilla. Mixed-integer programming models for nesting problems. European Journal of Operational Research, 253(3):570–583, 2016. [CrossRef] [Google Scholar]
  4. Ahmed Elkeran. A new approach for sheet nesting problem using guided cuckoo search and pairwise clustering. European Journal of Operational Research, 231(3):757–769, 2013. [CrossRef] [Google Scholar]
  5. Matteo Fischetti and Ivan Luzzi. Mixed-integer programming models for nesting problems. Journal of Heuristics, 15(3):201–226, 2009. [CrossRef] [Google Scholar]
  6. A.M. Gomes and, J.F. Oliveira. Solving irregular strip packing problems by hybridising simulated annealing and linear programming. European Journal of Operational Research, 171(3): 811–829, 2006. [CrossRef] [Google Scholar]
  7. Donald, R. Jones. A fully general, exact algorithm for nesting irregular shapes. Journal of Global Optimization, 59(2):367–404, 2014. [CrossRef] [Google Scholar]
  8. Aline, A.S. Leao, Franklina M.B. Toledo, José Fernando Oliveira, and Maria Antónia Carravilla. A semi-continuous mip model for the irregular strip packing problem. International Journal of Production Research, 54(3):712–721, 2016. [CrossRef] [Google Scholar]
  9. B.K. Nielsen and, A. Odgaard. Fast neighbourhood search for nesting problem. Technical Report 03/02, DIKU, Department of Computer Science, University of Copenhagen, 2003. [Google Scholar]
  10. Cristina Ribeiro, Maria Antónia Carravilla, and José F. Oliveira. Applying constraint logic programming to the resolution of nesting problems. Pesquisa Operacional, 19(2):239–247, 1999. [Google Scholar]
  11. M.C. Santoro and, F.K. Lemos. Irregular packing: Milp model based on a polygonal enclosure. Annals of Operations Research, 235(1):693–707, 2015. [CrossRef] [Google Scholar]
  12. F.M.B. Toledo, M.A. Carravilla., C. Ribeiro, J. F. Oliveira, and A. M. Gomes. The dottedboard model: a new mip model for nesting irregular shapes. International Journal of Production Economics, 145(2):478–487, 2013. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.