Open Access
ITM Web Conf.
Volume 20, 2018
International Conference on Mathematics (ICM 2018) Recent Advances in Algebra, Numerical Analysis, Applied Analysis and Statistics
Article Number 01001
Number of page(s) 9
Section Algebra
Published online 12 October 2018
  1. D.D. Anderson and D.F. Anderson, The ring R[X; r=X], in: Zero-Dimensional Commutative Rings, in: Lecture Notes in Pure and Appl. Math., vol. 171, (Marcel Dekker, New York, 1995), pp. 95-113. [Google Scholar]
  2. D.D. Anderson, E. Houston, and M. Zafrullah, t-linked extensions, the t-class group, and Nagata’s theorem, J. Pure Appl. Algebra 86, 109-124 (1993). [CrossRef] [Google Scholar]
  3. D.D. Anderson and L.A. Mahaney, On primary factorizations, J. Pure Appl. Algebra 54, 141-154 (1988). [CrossRef] [Google Scholar]
  4. D.D. Anderson, J. Mott, and M. Zafrullah, Finite character representations for integral domains, Bollettino U.M.I. 6-B(7), 613-630 (1992). [Google Scholar]
  5. D.D. Anderson and M. Zafrullah, Weakly factorial domains and groups of divisiblity, Proc. Amer. Math. Soc. 109, 907-913 (1990). [CrossRef] [Google Scholar]
  6. D.F. Anderson and G.W. Chang, Homogeneous splitiing sets of a graded integral domain, J. Algebra 288, 527-544 (2005). [CrossRef] [Google Scholar]
  7. D.F. Anderson, G.W. Chang, and J. Park, Generalized weakly factorial domains, Houston J. Math. 29, 1-13 (2003). [Google Scholar]
  8. D.F. Anderson, G.W. Chang, J. Park,Weakly Krull and related domains of the form D+M, A + XB[X], and A + X2B[X], Rocky Mountain J. Math. 36, 1-22 (2006). [CrossRef] [Google Scholar]
  9. A. Bouvier, Le groupe des classes d’un anneau intégré, 107ème Congrès National des Sociétés Savantes, Brest, fasc. IV, 85-92 (1982). [Google Scholar]
  10. G.W. Chang, Weakly factorial rings with zero divisors, in: Ideal Theoretic Methods in Commutative Algebra, in: Lecture Notes in Pure and Appl. Math., vol. 220, (Marcle Dekker, New York, 2001), pp. 119-131. [Google Scholar]
  11. G.W. Chang, Semigroup rings as wekly factoral domains, Comm. Algebra 37, 3278- 3287 (2009). [CrossRef] [Google Scholar]
  12. G.W. Chang, Some examples of weakly factorial rings, Korean J. Math. 21, 319-323 (2013). [CrossRef] [Google Scholar]
  13. G.W. Chang, Weakly factorial property of a generalized Rees ring D[X; d/x], Rocky Mountain J. Math., to appear. [Google Scholar]
  14. G.W. Chang and D.Y. Oh, Semigroup rings as wekly factoral domains, II, Preprint. [Google Scholar]
  15. S. El Baghdadi, L. Izelgue, and S. Kabbaj, On the class group of a graded domain, J. Pure Appl. Algebra 171, 171-184 (2002). [CrossRef] [Google Scholar]
  16. R. Fossum, The Divisor Class Group of a Krull Domain, (Springer, New York, 1973). [CrossRef] [Google Scholar]
  17. R. Gilmer, Commutative Semigroup Rings, (The Univ. of Chicago Press, Chicago, 1984). [Google Scholar]
  18. R. Gilmer and T. Parker, Divisiblility properties in semigroup rings, Michigan Math. J. 21, 65-86 (1974). [CrossRef] [Google Scholar]
  19. M. Griffn, Some results on v-multiplication rings, Canad. Math. J. 19, 710-722 (1967). [CrossRef] [Google Scholar]
  20. F. Halter-Koch, Ideal System: An introduction to Multiplicative Ideal Theory, (Marcel Dekker, New York, 1998). [Google Scholar]
  21. E. Houston and M. Zafrullah, On t-invertibility II, Comm. Algebra 17(8), 1955-1969 (1989). [CrossRef] [Google Scholar]
  22. D.G. Northcott, Lessons on Rings, Modules, and Multiplicities, (Cambridge Univ. Press, Cambridge, 1968). [CrossRef] [Google Scholar]
  23. R. Matsuda, Torsion-free abelian semigroup rings III, Bull. Fac. Sci. Ibaraki Univ. 9, 1-49 (1977). [CrossRef] [Google Scholar]
  24. R. Matsuda, Torsion-free abelian semigroup rings IV, Bull. Fac. Sci. Ibaraki Univ. Ser. A 10, 1-27 (1978). [CrossRef] [Google Scholar]
  25. R. Matsuda, Krull properties of semigroup rings, Bull. Fac. Sci. Ibaraki Univ. 14, 1-12 (1982). [CrossRef] [Google Scholar]
  26. H. Uda, A characterization of Prüfer v-multiplication domains in terms of polynomial grade, Hiroshima Math. J. 16, 115-120 (1986). [Google Scholar]
  27. D. Whitman, A note on unique factorization in Rees rings, Math. Japon. 17, 13-14 (1972). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.