Open Access
ITM Web Conf.
Volume 20, 2018
International Conference on Mathematics (ICM 2018) Recent Advances in Algebra, Numerical Analysis, Applied Analysis and Statistics
Article Number 01002
Number of page(s) 9
Section Algebra
Published online 12 October 2018
  1. J.T. Arnold, Krull dimension in power series rings, Trans. Amer. Math. Soc. 177, 299– 304 (1973). [CrossRef] [Google Scholar]
  2. J.T. Arnold and D.W. Boyd, Transcendence degree in power series rings, J. Algebra 57, no. 1, 180–195 (1979). [CrossRef] [Google Scholar]
  3. J.W. Brewer, Power series over commutative rings, Lecture Notes in Pure Appl. Math. 64, (Marcel Dekker, Inc., New York, 1981). [Google Scholar]
  4. R. Gilbert, A note on the quotient field of the domain D[[X]], Proc. Amer. Math. Soc. 18, 1138–1140 (1967). [CrossRef] [Google Scholar]
  5. L. Gillman and M. Jerison, Rings of continuous functions, (The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960). [CrossRef] [Google Scholar]
  6. R. Gilmer, Multiplicative ideal theory, (Marcel Dekker, New York, 1972). [Google Scholar]
  7. R. Gilmer, On commutative rings of finite rank, Duke Math. J. 39, 381–383 (1972). [CrossRef] [Google Scholar]
  8. L.T.N. Giau and P.T. Toan, Transcendental Degree in Power Series Rings, J. Algebra 501, 51–67 (2018). [CrossRef] [Google Scholar]
  9. B.G. Kang and M.H. Park, Krull-dimension of the power series ring over a nondiscretevaluation domain is uncountable, J. Algebra 378, 12–21 (2013). [CrossRef] [Google Scholar]
  10. B.G. Kang and P.T. Toan, A remark on the Noetherian property of power series rings Pacific J. Math. 283, 353–363 (2016). [Google Scholar]
  11. B.G. Kang and P.T. Toan, Krull dimension of power series rings over non-SFT domains, J. Algebra 499, 516–537 (2018). [CrossRef] [Google Scholar]
  12. B.G. Kang and P.T. Toan, Krull dimension of a power series ring over a valuation domain, preprint. [Google Scholar]
  13. I. Kaplansky, Commutative rings, Revised edition, (The University of Chicago Press, Chicago, Ill.-London, 1974). [Google Scholar]
  14. K.A. Loper and T.G. Lucas, Constructing chains of primes in power series rings, J. Algebra 334, 175–194 (2011). [CrossRef] [Google Scholar]
  15. K.A. Loper and T.G. Lucas, Constructing chains of primes in power series rings II, J. Algebra Appl. 12, no. 1, 1250123, 30 pp. (2013). [CrossRef] [Google Scholar]
  16. A. Seidenberg, A note on the dimension theory of rings, Pacific J. Math. 3, 505–512 (1953). [CrossRef] [Google Scholar]
  17. A. Seidenberg, On the dimension theory of rings II, Pacific J. Math. 4, 603–614 (1954). [CrossRef] [Google Scholar]
  18. P.B. Sheldon, How changing D[[X]] changes its quotient field, Trans. Amer. Math. Soc. 159, 223–244 (1971). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.