Open Access
ITM Web Conf.
Volume 20, 2018
International Conference on Mathematics (ICM 2018) Recent Advances in Algebra, Numerical Analysis, Applied Analysis and Statistics
Article Number 02002
Number of page(s) 8
Section Numerical and Applied Analysis
Published online 12 October 2018
  1. H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach Spaces, SIAM Rev. 18 (1976), 620-709. [CrossRef] [MathSciNet] [Google Scholar]
  2. P. Binding and P. Drabek, Sturm-Liouville theory for the p-Laplacian, Studia Sci. Math. Hunga. 40 (2003), no. 4, 375-396. [Google Scholar]
  3. K. D. Chu and D. D. Hai, Positive solutions for the one-dimensional Sturm-Liouville superlinear p-Laplacian problem, Electron. J. Differential Equations (2018), No. 92, pp. 1-14. [Google Scholar]
  4. K. D. Chu and D. D. Hai, Positive solutions for the one-dimensional singular superlinear p-Laplacian (submitted). [Google Scholar]
  5. A. Cwiszewski and M. Maciejewski, Positive stationary solutions for p-Laplacian problems with nonpositive perturbation, J. Differential Equations 254 (2013), 1120-1136. [CrossRef] [Google Scholar]
  6. M. Del Pino, M. Elgueta, and R. Manasevich, A homotopic deformation along p of a Leray-Schauder degree result and existence for (|u′|p‒2u′)′ + f (t; u) = 0; u(0) = u(T) = 0; p > 1. J. Differential Equations 80 (1989), no. 1, 1–13. [CrossRef] [Google Scholar]
  7. P. Drabek, Ranges of a -homogeneous operators and their perturbations, Casopis Pest. Mat. 105 (1980), 167-183. [Google Scholar]
  8. J. Dugundji and A. Granas, Fixed Point Theory, Springer-Verlag, 2004. [Google Scholar]
  9. L. Erbe and H.Wang, On the existence of positive solutions of ordinary differential equations. Proc. Amer. Math. Soc. 120 (1994), no. 3, 743–748. [CrossRef] [Google Scholar]
  10. D. de Figueiredo, P. L. Lions, and R. D. Nusbaum, Estimations a priori pour les solutions positives de problèmes elliptiques superlinéaires. (French) C. R. Acad. Sci. Paris Sér. A-B 290 (1980), no. 5, 217–220. [Google Scholar]
  11. D. D. Hai, On singular Sturm-Liouville boundary-value problems. Proc. Roy. Soc. Edinburgh Sect. A 140 (2010), no. 1, 49–63. [CrossRef] [Google Scholar]
  12. H. G. Kaper, M. Knaap, and M. K. Kwong, Existence theorems for second order boundary value problems. Differential Integral Equations 4 (1991), no. 3, 543–554. [Google Scholar]
  13. E. Lee, R. Shivaji, and J. Ye, Subsolutions: a journey from positone to infinite semipositone problems, Electron. J. Differ. Equ. Conf. 17 (2009), 123-131. [Google Scholar]
  14. R. Manásevich, F. Njoku and Zanolin, F, Positive solutions for the one-dimensional p-Laplacian. Differential Integral Equations 8 (1995), 213–222. [Google Scholar]
  15. J. R. L. Webb and K. Q. Lan, Eigenvalue criteria for existence of multiple positive solutions of nonlinear boundary vale problems of local and nonlocal types, Topol. Methods Nonlinear Anal. 27 (2006), 91-116. [Google Scholar]
  16. J.Wang, The existence of positive solutions for the one-dimensional p-Laplacian, Proc. Amer. Math. Soc. 125 (1997), 2275-2283. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.