Open Access
Issue |
ITM Web Conf.
Volume 20, 2018
International Conference on Mathematics (ICM 2018) Recent Advances in Algebra, Numerical Analysis, Applied Analysis and Statistics
|
|
---|---|---|
Article Number | 02001 | |
Number of page(s) | 8 | |
Section | Numerical and Applied Analysis | |
DOI | https://doi.org/10.1051/itmconf/20182002001 | |
Published online | 12 October 2018 |
- Oldham K.B, Spanier J. The Fractional Calculus, Academic Press: New York. 1974. [Google Scholar]
- Miller K.S, Ross B. An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley: New York. 1993. [Google Scholar]
- Mainardi F. Fractional calculus: Some basic problems in continuum and statistical mechanics’, in: A. Carpinteri, F. Mainardi (Eds.), Fractals and Fractional Calculus in Continuum Mechanics, Springer Verlag: New York. 1997; 291–348. [CrossRef] [Google Scholar]
- Bagley R.L, Torvik P.J. Fractional calculus in the transient analysis of viscoelastically damped structures, AIAA J. 1985; 23: 918–925. [CrossRef] [Google Scholar]
- Rossikhin Y.A, Shitikova M.V. Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids, Appl.Mech. Rev. 1997; 50: 15–67. [CrossRef] [Google Scholar]
- Chow T.S. Fractional dynamics of interfaces between soft-nanoparticles and rough substrates, Phys. Lett. A. 2005; 342: 148–155. [CrossRef] [Google Scholar]
- Rehman M.U, Ali khan R. A numerical method for solving boundary value problems for fractional differential equations, Appl. Math. Model. 2012; 36: 894–907. [CrossRef] [Google Scholar]
- Gaul L, Klein P, Kemple S. Damping description involving fractional operators, Mech. Syst. Signal. Pr. 1991; 5: 81–88. [CrossRef] [Google Scholar]
- Suarez L, Shokooh A. An eigenvector expansion method for the solution of motion containing fractional derivatives, J. Appl. Mech. 1997; 64: 629–735. [CrossRef] [Google Scholar]
- Podlubny I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Academic Press, New York. 1998. [Google Scholar]
- Momani S, Al-Khaled K. Numerical solutions for systems of fractional differential equations by the decomposition method, Appl. Math. Comput. 2005; 162: 1351–1365. [Google Scholar]
- Odibat Z, Momani S. Application of variational iteration method to nonlinear differential equations of fractional order, Int. J. Nonlinear Sci. Numer. Simul. 2006; 7: 27–34. [CrossRef] [Google Scholar]
- Meerschaert M, Tadjeran C. Finite difference approximations for two-sided spacefractional partial differential equations, Appl. Numer. Math. 2006; 56: 80–90. [CrossRef] [MathSciNet] [Google Scholar]
- Odibat Z, Shawagfeh N. Generalized Taylor’s formula, Appl. Math. Comput. 2007; 186: 286–293. [Google Scholar]
- Arikoglu A, Ozkol I. Solution of fractional integro-differential equations by using fractional differential transform method, Chaos Solitons Fract 2009; 40: 521–529. [CrossRef] [Google Scholar]
- Hashim I, Abdulaziz O, Momani S. Homotopy analysis method for fractional IVPs, Commun. Nonlinear Sci. Numer. Simul. 2009; 14: 674–684. [CrossRef] [Google Scholar]
- Razzaghi M, Marzban H. Hybrid analysis direct method in the calculus of variations, Int. J. Comput. Math. 2000; 75: 259–269. [CrossRef] [Google Scholar]
- Razzaghi M, Marzban H. Direct method for variational problems via hybrid of blockpulse and Chebyshev functions, Math. Prob. Eng. 2000; 6: 85-97. [CrossRef] [Google Scholar]
- Marzban H, Razzaghi M. Solution of multi-delay systems using hybrid of block-pulse functions and Taylor series, J. Soun. Vibr. 2006; 292: 954–963. [CrossRef] [Google Scholar]
- Tabrizidooz H.R, Marzban H, Razzaghi M. A composite collocation method for the nonlinear mixed Volterra-Fredholm-Hammerstein integral equations, Commun. Nonlin. Sci. Numeric. Simul. 2011; 16: 1186–1194. [CrossRef] [Google Scholar]
- Haddadi N, Ordokhani Y, Razzaghi M. Optimal Control of Delay Systems by Using a Hybrid Functions Approximation, J. Optimi. Theo. Appli. 2012; 153: 338–356. [CrossRef] [Google Scholar]
- Mashayekhi S, Ordokhani Y, Razzaghi M. Hybrid functions approach for nonlinear constrained optimal control problems, Commun. Nonlin. Sci. Numer. Simulat. 2012; 17: 1831–1843. [CrossRef] [Google Scholar]
- Mashayekhi S, Ordokhani Y, Razzaghi M. Hybrid functions approach for optimal control of systems described by integro-differential equations, Appl. Math. Model. 2013; 37: 3355–3368. [CrossRef] [Google Scholar]
- Mashayekhi, S., and Razzaghi, M., 2015, “Numerical solution of nonlinear fractional integro-differential equations by hybrid functions,” Eng. Analysis Bound. Elem., 56, pp. 81–89. [CrossRef] [Google Scholar]
- Mashayekhi, S., and Razzaghi, M., 2016, “Numerical solution of distributed order fractional differential equations by hybrid functions," J. Comput. Physics., 315, pp. 169–181. [CrossRef] [Google Scholar]
- Costabile F, Dellaccio F, Gualtieri M.I. A new approach to Bernoulli polynomials, Rendiconti di Matematica, Serie VII. 2006; 26: 1–12. [Google Scholar]
- Arfken G. Mathematical Methods for Physicists, Third edition, Academic Press: San Diego. 1985. [Google Scholar]
- Mujeeb U.R, Ali Rahmat K. The Legendre wavelet method for solving fractional differential equations, Commun Nonlinear Sci. Numer. Simulat. 2011; 16: 4163–4173. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.